Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ornglmullt Structured version   Visualization version   Unicode version

Theorem ornglmullt 29807
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b  |-  B  =  ( Base `  R
)
ornglmullt.t  |-  .x.  =  ( .r `  R )
ornglmullt.0  |-  .0.  =  ( 0g `  R )
ornglmullt.1  |-  ( ph  ->  R  e. oRing )
ornglmullt.2  |-  ( ph  ->  X  e.  B )
ornglmullt.3  |-  ( ph  ->  Y  e.  B )
ornglmullt.4  |-  ( ph  ->  Z  e.  B )
ornglmullt.l  |-  .<  =  ( lt `  R )
ornglmullt.d  |-  ( ph  ->  R  e.  DivRing )
ornglmullt.5  |-  ( ph  ->  X  .<  Y )
ornglmullt.6  |-  ( ph  ->  .0.  .<  Z )
Assertion
Ref Expression
ornglmullt  |-  ( ph  ->  ( Z  .x.  X
)  .<  ( Z  .x.  Y ) )

Proof of Theorem ornglmullt
StepHypRef Expression
1 ornglmullt.b . . 3  |-  B  =  ( Base `  R
)
2 ornglmullt.t . . 3  |-  .x.  =  ( .r `  R )
3 ornglmullt.0 . . 3  |-  .0.  =  ( 0g `  R )
4 ornglmullt.1 . . 3  |-  ( ph  ->  R  e. oRing )
5 ornglmullt.2 . . 3  |-  ( ph  ->  X  e.  B )
6 ornglmullt.3 . . 3  |-  ( ph  ->  Y  e.  B )
7 ornglmullt.4 . . 3  |-  ( ph  ->  Z  e.  B )
8 eqid 2622 . . 3  |-  ( le
`  R )  =  ( le `  R
)
9 ornglmullt.5 . . . 4  |-  ( ph  ->  X  .<  Y )
10 ornglmullt.l . . . . . 6  |-  .<  =  ( lt `  R )
118, 10pltle 16961 . . . . 5  |-  ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X
( le `  R
) Y ) )
1211imp 445 . . . 4  |-  ( ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X
( le `  R
) Y )
134, 5, 6, 9, 12syl31anc 1329 . . 3  |-  ( ph  ->  X ( le `  R ) Y )
14 orngring 29800 . . . . . 6  |-  ( R  e. oRing  ->  R  e.  Ring )
154, 14syl 17 . . . . 5  |-  ( ph  ->  R  e.  Ring )
16 ringgrp 18552 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
171, 3grpidcl 17450 . . . . 5  |-  ( R  e.  Grp  ->  .0.  e.  B )
1815, 16, 173syl 18 . . . 4  |-  ( ph  ->  .0.  e.  B )
19 ornglmullt.6 . . . 4  |-  ( ph  ->  .0.  .<  Z )
208, 10pltle 16961 . . . . 5  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B
)  ->  (  .0.  .<  Z  ->  .0.  ( le `  R ) Z ) )
2120imp 445 . . . 4  |-  ( ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B )  /\  .0.  .<  Z )  ->  .0.  ( le `  R ) Z )
224, 18, 7, 19, 21syl31anc 1329 . . 3  |-  ( ph  ->  .0.  ( le `  R ) Z )
231, 2, 3, 4, 5, 6, 7, 8, 13, 22ornglmulle 29805 . 2  |-  ( ph  ->  ( Z  .x.  X
) ( le `  R ) ( Z 
.x.  Y ) )
24 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  ( Z  .x.  X )  =  ( Z  .x.  Y ) )
2524oveq2d 6666 . . . . 5  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  ( (
( invr `  R ) `  Z )  .x.  ( Z  .x.  X ) )  =  ( ( (
invr `  R ) `  Z )  .x.  ( Z  .x.  Y ) ) )
26 ornglmullt.d . . . . . . . . . 10  |-  ( ph  ->  R  e.  DivRing )
2710pltne 16962 . . . . . . . . . . . . 13  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B
)  ->  (  .0.  .<  Z  ->  .0.  =/=  Z
) )
2827imp 445 . . . . . . . . . . . 12  |-  ( ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B )  /\  .0.  .<  Z )  ->  .0.  =/=  Z )
294, 18, 7, 19, 28syl31anc 1329 . . . . . . . . . . 11  |-  ( ph  ->  .0.  =/=  Z )
3029necomd 2849 . . . . . . . . . 10  |-  ( ph  ->  Z  =/=  .0.  )
31 eqid 2622 . . . . . . . . . . . 12  |-  (Unit `  R )  =  (Unit `  R )
321, 31, 3drngunit 18752 . . . . . . . . . . 11  |-  ( R  e.  DivRing  ->  ( Z  e.  (Unit `  R )  <->  ( Z  e.  B  /\  Z  =/=  .0.  ) ) )
3332biimpar 502 . . . . . . . . . 10  |-  ( ( R  e.  DivRing  /\  ( Z  e.  B  /\  Z  =/=  .0.  ) )  ->  Z  e.  (Unit `  R ) )
3426, 7, 30, 33syl12anc 1324 . . . . . . . . 9  |-  ( ph  ->  Z  e.  (Unit `  R ) )
35 eqid 2622 . . . . . . . . . 10  |-  ( invr `  R )  =  (
invr `  R )
36 eqid 2622 . . . . . . . . . 10  |-  ( 1r
`  R )  =  ( 1r `  R
)
3731, 35, 2, 36unitlinv 18677 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  Z  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  Z )  .x.  Z
)  =  ( 1r
`  R ) )
3815, 34, 37syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( ( invr `  R ) `  Z
)  .x.  Z )  =  ( 1r `  R ) )
3938oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( (
invr `  R ) `  Z )  .x.  Z
)  .x.  X )  =  ( ( 1r
`  R )  .x.  X ) )
4031, 35, 1ringinvcl 18676 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  Z  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  Z )  e.  B
)
4115, 34, 40syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( invr `  R
) `  Z )  e.  B )
421, 2ringass 18564 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  Z )  e.  B  /\  Z  e.  B  /\  X  e.  B ) )  -> 
( ( ( (
invr `  R ) `  Z )  .x.  Z
)  .x.  X )  =  ( ( (
invr `  R ) `  Z )  .x.  ( Z  .x.  X ) ) )
4315, 41, 7, 5, 42syl13anc 1328 . . . . . . 7  |-  ( ph  ->  ( ( ( (
invr `  R ) `  Z )  .x.  Z
)  .x.  X )  =  ( ( (
invr `  R ) `  Z )  .x.  ( Z  .x.  X ) ) )
441, 2, 36ringlidm 18571 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 1r `  R
)  .x.  X )  =  X )
4515, 5, 44syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( 1r `  R )  .x.  X
)  =  X )
4639, 43, 453eqtr3d 2664 . . . . . 6  |-  ( ph  ->  ( ( ( invr `  R ) `  Z
)  .x.  ( Z  .x.  X ) )  =  X )
4746adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  ( (
( invr `  R ) `  Z )  .x.  ( Z  .x.  X ) )  =  X )
4838oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( ( (
invr `  R ) `  Z )  .x.  Z
)  .x.  Y )  =  ( ( 1r
`  R )  .x.  Y ) )
491, 2ringass 18564 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
( ( invr `  R
) `  Z )  e.  B  /\  Z  e.  B  /\  Y  e.  B ) )  -> 
( ( ( (
invr `  R ) `  Z )  .x.  Z
)  .x.  Y )  =  ( ( (
invr `  R ) `  Z )  .x.  ( Z  .x.  Y ) ) )
5015, 41, 7, 6, 49syl13anc 1328 . . . . . . 7  |-  ( ph  ->  ( ( ( (
invr `  R ) `  Z )  .x.  Z
)  .x.  Y )  =  ( ( (
invr `  R ) `  Z )  .x.  ( Z  .x.  Y ) ) )
511, 2, 36ringlidm 18571 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
5215, 6, 51syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( 1r `  R )  .x.  Y
)  =  Y )
5348, 50, 523eqtr3d 2664 . . . . . 6  |-  ( ph  ->  ( ( ( invr `  R ) `  Z
)  .x.  ( Z  .x.  Y ) )  =  Y )
5453adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  ( (
( invr `  R ) `  Z )  .x.  ( Z  .x.  Y ) )  =  Y )
5525, 47, 543eqtr3d 2664 . . . 4  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  X  =  Y )
5610pltne 16962 . . . . . . . 8  |-  ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X  =/=  Y ) )
5756imp 445 . . . . . . 7  |-  ( ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X  =/=  Y )
584, 5, 6, 9, 57syl31anc 1329 . . . . . 6  |-  ( ph  ->  X  =/=  Y )
5958adantr 481 . . . . 5  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  X  =/=  Y )
6059neneqd 2799 . . . 4  |-  ( (
ph  /\  ( Z  .x.  X )  =  ( Z  .x.  Y ) )  ->  -.  X  =  Y )
6155, 60pm2.65da 600 . . 3  |-  ( ph  ->  -.  ( Z  .x.  X )  =  ( Z  .x.  Y ) )
6261neqned 2801 . 2  |-  ( ph  ->  ( Z  .x.  X
)  =/=  ( Z 
.x.  Y ) )
631, 2ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  X  e.  B )  ->  ( Z  .x.  X )  e.  B )
6415, 7, 5, 63syl3anc 1326 . . 3  |-  ( ph  ->  ( Z  .x.  X
)  e.  B )
651, 2ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  Z  e.  B  /\  Y  e.  B )  ->  ( Z  .x.  Y )  e.  B )
6615, 7, 6, 65syl3anc 1326 . . 3  |-  ( ph  ->  ( Z  .x.  Y
)  e.  B )
678, 10pltval 16960 . . 3  |-  ( ( R  e. oRing  /\  ( Z  .x.  X )  e.  B  /\  ( Z 
.x.  Y )  e.  B )  ->  (
( Z  .x.  X
)  .<  ( Z  .x.  Y )  <->  ( ( Z  .x.  X ) ( le `  R ) ( Z  .x.  Y
)  /\  ( Z  .x.  X )  =/=  ( Z  .x.  Y ) ) ) )
684, 64, 66, 67syl3anc 1326 . 2  |-  ( ph  ->  ( ( Z  .x.  X )  .<  ( Z  .x.  Y )  <->  ( ( Z  .x.  X ) ( le `  R ) ( Z  .x.  Y
)  /\  ( Z  .x.  X )  =/=  ( Z  .x.  Y ) ) ) )
6923, 62, 68mpbir2and 957 1  |-  ( ph  ->  ( Z  .x.  X
)  .<  ( Z  .x.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   lecple 15948   0gc0g 16100   ltcplt 16941   Grpcgrp 17422   1rcur 18501   Ringcrg 18547  Unitcui 18639   invrcinvr 18671   DivRingcdr 18747  oRingcorng 29795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-omnd 29699  df-ogrp 29700  df-orng 29797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator