Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orngrmullt Structured version   Visualization version   Unicode version

Theorem orngrmullt 29808
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
Hypotheses
Ref Expression
ornglmullt.b  |-  B  =  ( Base `  R
)
ornglmullt.t  |-  .x.  =  ( .r `  R )
ornglmullt.0  |-  .0.  =  ( 0g `  R )
ornglmullt.1  |-  ( ph  ->  R  e. oRing )
ornglmullt.2  |-  ( ph  ->  X  e.  B )
ornglmullt.3  |-  ( ph  ->  Y  e.  B )
ornglmullt.4  |-  ( ph  ->  Z  e.  B )
ornglmullt.l  |-  .<  =  ( lt `  R )
ornglmullt.d  |-  ( ph  ->  R  e.  DivRing )
ornglmullt.5  |-  ( ph  ->  X  .<  Y )
ornglmullt.6  |-  ( ph  ->  .0.  .<  Z )
Assertion
Ref Expression
orngrmullt  |-  ( ph  ->  ( X  .x.  Z
)  .<  ( Y  .x.  Z ) )

Proof of Theorem orngrmullt
StepHypRef Expression
1 ornglmullt.b . . 3  |-  B  =  ( Base `  R
)
2 ornglmullt.t . . 3  |-  .x.  =  ( .r `  R )
3 ornglmullt.0 . . 3  |-  .0.  =  ( 0g `  R )
4 ornglmullt.1 . . 3  |-  ( ph  ->  R  e. oRing )
5 ornglmullt.2 . . 3  |-  ( ph  ->  X  e.  B )
6 ornglmullt.3 . . 3  |-  ( ph  ->  Y  e.  B )
7 ornglmullt.4 . . 3  |-  ( ph  ->  Z  e.  B )
8 eqid 2622 . . 3  |-  ( le
`  R )  =  ( le `  R
)
9 ornglmullt.5 . . . 4  |-  ( ph  ->  X  .<  Y )
10 ornglmullt.l . . . . . 6  |-  .<  =  ( lt `  R )
118, 10pltle 16961 . . . . 5  |-  ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X
( le `  R
) Y ) )
1211imp 445 . . . 4  |-  ( ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X
( le `  R
) Y )
134, 5, 6, 9, 12syl31anc 1329 . . 3  |-  ( ph  ->  X ( le `  R ) Y )
14 orngring 29800 . . . . . 6  |-  ( R  e. oRing  ->  R  e.  Ring )
154, 14syl 17 . . . . 5  |-  ( ph  ->  R  e.  Ring )
16 ringgrp 18552 . . . . 5  |-  ( R  e.  Ring  ->  R  e. 
Grp )
171, 3grpidcl 17450 . . . . 5  |-  ( R  e.  Grp  ->  .0.  e.  B )
1815, 16, 173syl 18 . . . 4  |-  ( ph  ->  .0.  e.  B )
19 ornglmullt.6 . . . 4  |-  ( ph  ->  .0.  .<  Z )
208, 10pltle 16961 . . . . 5  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B
)  ->  (  .0.  .<  Z  ->  .0.  ( le `  R ) Z ) )
2120imp 445 . . . 4  |-  ( ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B )  /\  .0.  .<  Z )  ->  .0.  ( le `  R ) Z )
224, 18, 7, 19, 21syl31anc 1329 . . 3  |-  ( ph  ->  .0.  ( le `  R ) Z )
231, 2, 3, 4, 5, 6, 7, 8, 13, 22orngrmulle 29806 . 2  |-  ( ph  ->  ( X  .x.  Z
) ( le `  R ) ( Y 
.x.  Z ) )
24 simpr 477 . . . . . 6  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  ( X  .x.  Z )  =  ( Y  .x.  Z ) )
2524oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  ( ( X  .x.  Z ) (/r `  R ) Z )  =  ( ( Y 
.x.  Z ) (/r `  R ) Z ) )
26 ornglmullt.d . . . . . . . 8  |-  ( ph  ->  R  e.  DivRing )
2710pltne 16962 . . . . . . . . . . 11  |-  ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B
)  ->  (  .0.  .<  Z  ->  .0.  =/=  Z
) )
2827imp 445 . . . . . . . . . 10  |-  ( ( ( R  e. oRing  /\  .0.  e.  B  /\  Z  e.  B )  /\  .0.  .<  Z )  ->  .0.  =/=  Z )
294, 18, 7, 19, 28syl31anc 1329 . . . . . . . . 9  |-  ( ph  ->  .0.  =/=  Z )
3029necomd 2849 . . . . . . . 8  |-  ( ph  ->  Z  =/=  .0.  )
31 eqid 2622 . . . . . . . . . 10  |-  (Unit `  R )  =  (Unit `  R )
321, 31, 3drngunit 18752 . . . . . . . . 9  |-  ( R  e.  DivRing  ->  ( Z  e.  (Unit `  R )  <->  ( Z  e.  B  /\  Z  =/=  .0.  ) ) )
3332biimpar 502 . . . . . . . 8  |-  ( ( R  e.  DivRing  /\  ( Z  e.  B  /\  Z  =/=  .0.  ) )  ->  Z  e.  (Unit `  R ) )
3426, 7, 30, 33syl12anc 1324 . . . . . . 7  |-  ( ph  ->  Z  e.  (Unit `  R ) )
35 eqid 2622 . . . . . . . 8  |-  (/r `  R
)  =  (/r `  R
)
361, 31, 35, 2dvrcan3 18692 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  (Unit `  R )
)  ->  ( ( X  .x.  Z ) (/r `  R ) Z )  =  X )
3715, 5, 34, 36syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  Z ) (/r `  R
) Z )  =  X )
3837adantr 481 . . . . 5  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  ( ( X  .x.  Z ) (/r `  R ) Z )  =  X )
391, 31, 35, 2dvrcan3 18692 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  Z  e.  (Unit `  R )
)  ->  ( ( Y  .x.  Z ) (/r `  R ) Z )  =  Y )
4015, 6, 34, 39syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( ( Y  .x.  Z ) (/r `  R
) Z )  =  Y )
4140adantr 481 . . . . 5  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  ( ( Y  .x.  Z ) (/r `  R ) Z )  =  Y )
4225, 38, 413eqtr3d 2664 . . . 4  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  X  =  Y )
4310pltne 16962 . . . . . . . 8  |-  ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X  =/=  Y ) )
4443imp 445 . . . . . . 7  |-  ( ( ( R  e. oRing  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  X  =/=  Y )
454, 5, 6, 9, 44syl31anc 1329 . . . . . 6  |-  ( ph  ->  X  =/=  Y )
4645adantr 481 . . . . 5  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  X  =/=  Y )
4746neneqd 2799 . . . 4  |-  ( (
ph  /\  ( X  .x.  Z )  =  ( Y  .x.  Z ) )  ->  -.  X  =  Y )
4842, 47pm2.65da 600 . . 3  |-  ( ph  ->  -.  ( X  .x.  Z )  =  ( Y  .x.  Z ) )
4948neqned 2801 . 2  |-  ( ph  ->  ( X  .x.  Z
)  =/=  ( Y 
.x.  Z ) )
501, 2ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .x.  Z )  e.  B )
5115, 5, 7, 50syl3anc 1326 . . 3  |-  ( ph  ->  ( X  .x.  Z
)  e.  B )
521, 2ringcl 18561 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .x.  Z )  e.  B )
5315, 6, 7, 52syl3anc 1326 . . 3  |-  ( ph  ->  ( Y  .x.  Z
)  e.  B )
548, 10pltval 16960 . . 3  |-  ( ( R  e. oRing  /\  ( X  .x.  Z )  e.  B  /\  ( Y 
.x.  Z )  e.  B )  ->  (
( X  .x.  Z
)  .<  ( Y  .x.  Z )  <->  ( ( X  .x.  Z ) ( le `  R ) ( Y  .x.  Z
)  /\  ( X  .x.  Z )  =/=  ( Y  .x.  Z ) ) ) )
554, 51, 53, 54syl3anc 1326 . 2  |-  ( ph  ->  ( ( X  .x.  Z )  .<  ( Y  .x.  Z )  <->  ( ( X  .x.  Z ) ( le `  R ) ( Y  .x.  Z
)  /\  ( X  .x.  Z )  =/=  ( Y  .x.  Z ) ) ) )
5623, 49, 55mpbir2and 957 1  |-  ( ph  ->  ( X  .x.  Z
)  .<  ( Y  .x.  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   lecple 15948   0gc0g 16100   ltcplt 16941   Grpcgrp 17422   Ringcrg 18547  Unitcui 18639  /rcdvr 18682   DivRingcdr 18747  oRingcorng 29795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-plt 16958  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-drng 18749  df-omnd 29699  df-ogrp 29700  df-orng 29797
This theorem is referenced by:  isarchiofld  29817
  Copyright terms: Public domain W3C validator