Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1234qrmulcl Structured version   Visualization version   Unicode version

Theorem pell1234qrmulcl 37419
Description: General solutions of the Pell equation are closed under multiplication. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1234qrmulcl  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell1234QR `  D )  /\  B  e.  (Pell1234QR `  D ) )  ->  ( A  x.  B )  e.  (Pell1234QR `  D ) )

Proof of Theorem pell1234qrmulcl
Dummy variables  a 
b  c  d  e  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remulcl 10021 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
21ad5antlr 771 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( A  x.  B
)  e.  RR )
3 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  a  e.  ZZ )
43ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
a  e.  ZZ )
5 simplrl 800 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
c  e.  ZZ )
64, 5zmulcld 11488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  x.  c
)  e.  ZZ )
7 eldifi 3732 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( NN  \NN )  ->  D  e.  NN )
87ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  D  e.  NN )
98nnzd 11481 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  D  e.  ZZ )
109ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  ->  D  e.  ZZ )
11 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
d  e.  ZZ )
12 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  b  e.  ZZ )
1312ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
b  e.  ZZ )
1411, 13zmulcld 11488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( d  x.  b
)  e.  ZZ )
1510, 14zmulcld 11488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( D  x.  (
d  x.  b ) )  e.  ZZ )
166, 15zaddcld 11486 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  e.  ZZ )
174, 11zmulcld 11488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  x.  d
)  e.  ZZ )
185, 13zmulcld 11488 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( c  x.  b
)  e.  ZZ )
1917, 18zaddcld 11486 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  d )  +  ( c  x.  b ) )  e.  ZZ )
20 simprl 794 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  ->  A  =  ( a  +  ( ( sqr `  D )  x.  b
) ) )
2120ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  ->  A  =  ( a  +  ( ( sqr `  D )  x.  b
) ) )
22 simprl 794 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  ->  B  =  ( c  +  ( ( sqr `  D )  x.  d
) ) )
2321, 22oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( A  x.  B
)  =  ( ( a  +  ( ( sqr `  D )  x.  b ) )  x.  ( c  +  ( ( sqr `  D
)  x.  d ) ) ) )
24 zcn 11382 . . . . . . . . . . . . . . 15  |-  ( a  e.  ZZ  ->  a  e.  CC )
2524ad2antrl 764 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  a  e.  CC )
2625ad3antrrr 766 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
a  e.  CC )
278nncnd 11036 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  D  e.  CC )
2827ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  ->  D  e.  CC )
2928sqrtcld 14176 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( sqr `  D
)  e.  CC )
30 zcn 11382 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ZZ  ->  b  e.  CC )
3130ad2antll 765 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  b  e.  CC )
3231ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
b  e.  CC )
3329, 32mulcld 10060 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( sqr `  D
)  x.  b )  e.  CC )
34 zcn 11382 . . . . . . . . . . . . . . 15  |-  ( c  e.  ZZ  ->  c  e.  CC )
3534adantr 481 . . . . . . . . . . . . . 14  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  c  e.  CC )
3635ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
c  e.  CC )
37 zcn 11382 . . . . . . . . . . . . . . . 16  |-  ( d  e.  ZZ  ->  d  e.  CC )
3837adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( c  e.  ZZ  /\  d  e.  ZZ )  ->  d  e.  CC )
3938ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
d  e.  CC )
4029, 39mulcld 10060 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( sqr `  D
)  x.  d )  e.  CC )
4126, 33, 36, 40muladdd 10489 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  +  ( ( sqr `  D
)  x.  b ) )  x.  ( c  +  ( ( sqr `  D )  x.  d
) ) )  =  ( ( ( a  x.  c )  +  ( ( ( sqr `  D )  x.  d
)  x.  ( ( sqr `  D )  x.  b ) ) )  +  ( ( a  x.  ( ( sqr `  D )  x.  d ) )  +  ( c  x.  ( ( sqr `  D
)  x.  b ) ) ) ) )
4229, 39, 29, 32mul4d 10248 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D )  x.  d
)  x.  ( ( sqr `  D )  x.  b ) )  =  ( ( ( sqr `  D )  x.  ( sqr `  D
) )  x.  (
d  x.  b ) ) )
4328msqsqrtd 14179 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( sqr `  D
)  x.  ( sqr `  D ) )  =  D )
4443oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D )  x.  ( sqr `  D ) )  x.  ( d  x.  b ) )  =  ( D  x.  (
d  x.  b ) ) )
4542, 44eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D )  x.  d
)  x.  ( ( sqr `  D )  x.  b ) )  =  ( D  x.  ( d  x.  b
) ) )
4645oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  c )  +  ( ( ( sqr `  D
)  x.  d )  x.  ( ( sqr `  D )  x.  b
) ) )  =  ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) ) )
4726, 29, 39mul12d 10245 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  x.  (
( sqr `  D
)  x.  d ) )  =  ( ( sqr `  D )  x.  ( a  x.  d ) ) )
4836, 29, 32mul12d 10245 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( c  x.  (
( sqr `  D
)  x.  b ) )  =  ( ( sqr `  D )  x.  ( c  x.  b ) ) )
4947, 48oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  ( ( sqr `  D
)  x.  d ) )  +  ( c  x.  ( ( sqr `  D )  x.  b
) ) )  =  ( ( ( sqr `  D )  x.  (
a  x.  d ) )  +  ( ( sqr `  D )  x.  ( c  x.  b ) ) ) )
5026, 39mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  x.  d
)  e.  CC )
5136, 32mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( c  x.  b
)  e.  CC )
5229, 50, 51adddid 10064 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) )  =  ( ( ( sqr `  D )  x.  ( a  x.  d ) )  +  ( ( sqr `  D
)  x.  ( c  x.  b ) ) ) )
5349, 52eqtr4d 2659 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  ( ( sqr `  D
)  x.  d ) )  +  ( c  x.  ( ( sqr `  D )  x.  b
) ) )  =  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) )
5446, 53oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a  x.  c )  +  ( ( ( sqr `  D )  x.  d
)  x.  ( ( sqr `  D )  x.  b ) ) )  +  ( ( a  x.  ( ( sqr `  D )  x.  d ) )  +  ( c  x.  ( ( sqr `  D
)  x.  b ) ) ) )  =  ( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  +  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) ) )
5523, 41, 543eqtrd 2660 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( A  x.  B
)  =  ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  (
( a  x.  d
)  +  ( c  x.  b ) ) ) ) )
5650, 51addcld 10059 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  d )  +  ( c  x.  b ) )  e.  CC )
5729, 56sqmuld 13020 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D )  x.  (
( a  x.  d
)  +  ( c  x.  b ) ) ) ^ 2 )  =  ( ( ( sqr `  D ) ^ 2 )  x.  ( ( ( a  x.  d )  +  ( c  x.  b
) ) ^ 2 ) ) )
5828sqsqrtd 14178 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( sqr `  D
) ^ 2 )  =  D )
5958oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D ) ^ 2 )  x.  ( ( ( a  x.  d
)  +  ( c  x.  b ) ) ^ 2 ) )  =  ( D  x.  ( ( ( a  x.  d )  +  ( c  x.  b
) ) ^ 2 ) ) )
6057, 59eqtr2d 2657 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( D  x.  (
( ( a  x.  d )  +  ( c  x.  b ) ) ^ 2 ) )  =  ( ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) ^ 2 ) )
6160oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 )  -  ( D  x.  ( (
( a  x.  d
)  +  ( c  x.  b ) ) ^ 2 ) ) )  =  ( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( ( ( sqr `  D )  x.  ( ( a  x.  d )  +  ( c  x.  b
) ) ) ^
2 ) ) )
6226, 36mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  x.  c
)  e.  CC )
6339, 32mulcld 10060 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( d  x.  b
)  e.  CC )
6428, 63mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( D  x.  (
d  x.  b ) )  e.  CC )
6562, 64addcld 10059 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  e.  CC )
6629, 56mulcld 10060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) )  e.  CC )
67 subsq 12972 . . . . . . . . . . . . . 14  |-  ( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  e.  CC  /\  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) )  e.  CC )  -> 
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 )  -  (
( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) ^ 2 ) )  =  ( ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  (
( a  x.  d
)  +  ( c  x.  b ) ) ) )  x.  (
( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  -  ( ( sqr `  D )  x.  ( ( a  x.  d )  +  ( c  x.  b
) ) ) ) ) )
6865, 66, 67syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 )  -  (
( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) ^ 2 ) )  =  ( ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  (
( a  x.  d
)  +  ( c  x.  b ) ) ) )  x.  (
( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  -  ( ( sqr `  D )  x.  ( ( a  x.  d )  +  ( c  x.  b
) ) ) ) ) )
6941, 54eqtr2d 2657 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  +  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) )  =  ( ( a  +  ( ( sqr `  D )  x.  b ) )  x.  ( c  +  ( ( sqr `  D
)  x.  d ) ) ) )
7026, 33, 36, 40mulsubd 10490 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a  -  ( ( sqr `  D
)  x.  b ) )  x.  ( c  -  ( ( sqr `  D )  x.  d
) ) )  =  ( ( ( a  x.  c )  +  ( ( ( sqr `  D )  x.  d
)  x.  ( ( sqr `  D )  x.  b ) ) )  -  ( ( a  x.  ( ( sqr `  D )  x.  d ) )  +  ( c  x.  ( ( sqr `  D
)  x.  b ) ) ) ) )
7146, 53oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a  x.  c )  +  ( ( ( sqr `  D )  x.  d
)  x.  ( ( sqr `  D )  x.  b ) ) )  -  ( ( a  x.  ( ( sqr `  D )  x.  d ) )  +  ( c  x.  ( ( sqr `  D
)  x.  b ) ) ) )  =  ( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  -  (
( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) ) )
7270, 71eqtr2d 2657 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  -  (
( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) )  =  ( ( a  -  ( ( sqr `  D )  x.  b ) )  x.  ( c  -  ( ( sqr `  D
)  x.  d ) ) ) )
7369, 72oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) )  +  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) )  x.  ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) )  -  ( ( sqr `  D )  x.  (
( a  x.  d
)  +  ( c  x.  b ) ) ) ) )  =  ( ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
c  +  ( ( sqr `  D )  x.  d ) ) )  x.  ( ( a  -  ( ( sqr `  D )  x.  b ) )  x.  ( c  -  ( ( sqr `  D
)  x.  d ) ) ) ) )
7461, 68, 733eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 )  -  ( D  x.  ( (
( a  x.  d
)  +  ( c  x.  b ) ) ^ 2 ) ) )  =  ( ( ( a  +  ( ( sqr `  D
)  x.  b ) )  x.  ( c  +  ( ( sqr `  D )  x.  d
) ) )  x.  ( ( a  -  ( ( sqr `  D
)  x.  b ) )  x.  ( c  -  ( ( sqr `  D )  x.  d
) ) ) ) )
7526, 33addcld 10059 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  +  ( ( sqr `  D
)  x.  b ) )  e.  CC )
7636, 40addcld 10059 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( c  +  ( ( sqr `  D
)  x.  d ) )  e.  CC )
7726, 33subcld 10392 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( a  -  (
( sqr `  D
)  x.  b ) )  e.  CC )
7836, 40subcld 10392 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( c  -  (
( sqr `  D
)  x.  d ) )  e.  CC )
7975, 76, 77, 78mul4d 10248 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
c  +  ( ( sqr `  D )  x.  d ) ) )  x.  ( ( a  -  ( ( sqr `  D )  x.  b ) )  x.  ( c  -  ( ( sqr `  D
)  x.  d ) ) ) )  =  ( ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
a  -  ( ( sqr `  D )  x.  b ) ) )  x.  ( ( c  +  ( ( sqr `  D )  x.  d ) )  x.  ( c  -  ( ( sqr `  D
)  x.  d ) ) ) ) )
80 subsq 12972 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  CC  /\  ( ( sqr `  D
)  x.  b )  e.  CC )  -> 
( ( a ^
2 )  -  (
( ( sqr `  D
)  x.  b ) ^ 2 ) )  =  ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
a  -  ( ( sqr `  D )  x.  b ) ) ) )
8126, 33, 80syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  (
( ( sqr `  D
)  x.  b ) ^ 2 ) )  =  ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
a  -  ( ( sqr `  D )  x.  b ) ) ) )
82 subsq 12972 . . . . . . . . . . . . . . 15  |-  ( ( c  e.  CC  /\  ( ( sqr `  D
)  x.  d )  e.  CC )  -> 
( ( c ^
2 )  -  (
( ( sqr `  D
)  x.  d ) ^ 2 ) )  =  ( ( c  +  ( ( sqr `  D )  x.  d
) )  x.  (
c  -  ( ( sqr `  D )  x.  d ) ) ) )
8336, 40, 82syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( c ^
2 )  -  (
( ( sqr `  D
)  x.  d ) ^ 2 ) )  =  ( ( c  +  ( ( sqr `  D )  x.  d
) )  x.  (
c  -  ( ( sqr `  D )  x.  d ) ) ) )
8481, 83oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a ^ 2 )  -  ( ( ( sqr `  D )  x.  b
) ^ 2 ) )  x.  ( ( c ^ 2 )  -  ( ( ( sqr `  D )  x.  d ) ^
2 ) ) )  =  ( ( ( a  +  ( ( sqr `  D )  x.  b ) )  x.  ( a  -  ( ( sqr `  D
)  x.  b ) ) )  x.  (
( c  +  ( ( sqr `  D
)  x.  d ) )  x.  ( c  -  ( ( sqr `  D )  x.  d
) ) ) ) )
8529, 32sqmuld 13020 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D )  x.  b
) ^ 2 )  =  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )
8685oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  (
( ( sqr `  D
)  x.  b ) ^ 2 ) )  =  ( ( a ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) ) )
8729, 39sqmuld 13020 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D )  x.  d
) ^ 2 )  =  ( ( ( sqr `  D ) ^ 2 )  x.  ( d ^ 2 ) ) )
8887oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( c ^
2 )  -  (
( ( sqr `  D
)  x.  d ) ^ 2 ) )  =  ( ( c ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( d ^ 2 ) ) ) )
8986, 88oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a ^ 2 )  -  ( ( ( sqr `  D )  x.  b
) ^ 2 ) )  x.  ( ( c ^ 2 )  -  ( ( ( sqr `  D )  x.  d ) ^
2 ) ) )  =  ( ( ( a ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )  x.  ( ( c ^
2 )  -  (
( ( sqr `  D
) ^ 2 )  x.  ( d ^
2 ) ) ) ) )
9079, 84, 893eqtr2d 2662 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a  +  ( ( sqr `  D )  x.  b
) )  x.  (
c  +  ( ( sqr `  D )  x.  d ) ) )  x.  ( ( a  -  ( ( sqr `  D )  x.  b ) )  x.  ( c  -  ( ( sqr `  D
)  x.  d ) ) ) )  =  ( ( ( a ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )  x.  ( ( c ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( d ^ 2 ) ) ) ) )
9158oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) )  =  ( D  x.  ( b ^ 2 ) ) )
9291oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  (
( ( sqr `  D
) ^ 2 )  x.  ( b ^
2 ) ) )  =  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) ) )
9358oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( sqr `  D ) ^ 2 )  x.  ( d ^ 2 ) )  =  ( D  x.  ( d ^ 2 ) ) )
9493oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( c ^
2 )  -  (
( ( sqr `  D
) ^ 2 )  x.  ( d ^
2 ) ) )  =  ( ( c ^ 2 )  -  ( D  x.  (
d ^ 2 ) ) ) )
9592, 94oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )  x.  ( ( c ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( d ^ 2 ) ) ) )  =  ( ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  x.  ( ( c ^
2 )  -  ( D  x.  ( d ^ 2 ) ) ) ) )
96 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )
9796ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )
98 simprr 796 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( c ^
2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 )
9997, 98oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  x.  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) ) )  =  ( 1  x.  1 ) )
100 1t1e1 11175 . . . . . . . . . . . . . 14  |-  ( 1  x.  1 )  =  1
101100a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( 1  x.  1 )  =  1 )
10295, 99, 1013eqtrd 2660 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( a ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )  x.  ( ( c ^ 2 )  -  ( ( ( sqr `  D ) ^ 2 )  x.  ( d ^ 2 ) ) ) )  =  1 )
10374, 90, 1023eqtrd 2660 . . . . . . . . . . 11  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 )  -  ( D  x.  ( (
( a  x.  d
)  +  ( c  x.  b ) ) ^ 2 ) ) )  =  1 )
104 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( e  =  ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  ->  (
e  +  ( ( sqr `  D )  x.  f ) )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) )  +  ( ( sqr `  D
)  x.  f ) ) )
105104eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( e  =  ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  ->  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  <->  ( A  x.  B )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  f ) ) ) )
106 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( e  =  ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  ->  (
e ^ 2 )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 ) )
107106oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( e  =  ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  ->  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  ( ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( D  x.  (
f ^ 2 ) ) ) )
108107eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( e  =  ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  ->  (
( ( e ^
2 )  -  ( D  x.  ( f ^ 2 ) ) )  =  1  <->  (
( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) ) ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) )
109105, 108anbi12d 747 . . . . . . . . . . . 12  |-  ( e  =  ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  ->  (
( ( A  x.  B )  =  ( e  +  ( ( sqr `  D )  x.  f ) )  /\  ( ( e ^ 2 )  -  ( D  x.  (
f ^ 2 ) ) )  =  1 )  <->  ( ( A  x.  B )  =  ( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  +  ( ( sqr `  D
)  x.  f ) )  /\  ( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( D  x.  ( f ^ 2 ) ) )  =  1 ) ) )
110 oveq2 6658 . . . . . . . . . . . . . . 15  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
( sqr `  D
)  x.  f )  =  ( ( sqr `  D )  x.  (
( a  x.  d
)  +  ( c  x.  b ) ) ) )
111110oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  f ) )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) )  +  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) ) )
112111eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
( A  x.  B
)  =  ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  f
) )  <->  ( A  x.  B )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  ( ( a  x.  d )  +  ( c  x.  b
) ) ) ) ) )
113 oveq1 6657 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
f ^ 2 )  =  ( ( ( a  x.  d )  +  ( c  x.  b ) ) ^
2 ) )
114113oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  ( D  x.  ( f ^ 2 ) )  =  ( D  x.  ( ( ( a  x.  d )  +  ( c  x.  b
) ) ^ 2 ) ) )
115114oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) ) ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  ( ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( D  x.  (
( ( a  x.  d )  +  ( c  x.  b ) ) ^ 2 ) ) ) )
116115eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b
) ) ) ^
2 )  -  ( D  x.  ( f ^ 2 ) ) )  =  1  <->  (
( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) ) ^ 2 )  -  ( D  x.  ( ( ( a  x.  d )  +  ( c  x.  b ) ) ^
2 ) ) )  =  1 ) )
117112, 116anbi12d 747 . . . . . . . . . . . 12  |-  ( f  =  ( ( a  x.  d )  +  ( c  x.  b
) )  ->  (
( ( A  x.  B )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  f ) )  /\  ( ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( D  x.  (
f ^ 2 ) ) )  =  1 )  <->  ( ( A  x.  B )  =  ( ( ( a  x.  c )  +  ( D  x.  (
d  x.  b ) ) )  +  ( ( sqr `  D
)  x.  ( ( a  x.  d )  +  ( c  x.  b ) ) ) )  /\  ( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( D  x.  ( ( ( a  x.  d )  +  ( c  x.  b
) ) ^ 2 ) ) )  =  1 ) ) )
118109, 117rspc2ev 3324 . . . . . . . . . . 11  |-  ( ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  e.  ZZ  /\  ( ( a  x.  d )  +  ( c  x.  b ) )  e.  ZZ  /\  ( ( A  x.  B )  =  ( ( ( a  x.  c )  +  ( D  x.  ( d  x.  b ) ) )  +  ( ( sqr `  D )  x.  ( ( a  x.  d )  +  ( c  x.  b
) ) ) )  /\  ( ( ( ( a  x.  c
)  +  ( D  x.  ( d  x.  b ) ) ) ^ 2 )  -  ( D  x.  (
( ( a  x.  d )  +  ( c  x.  b ) ) ^ 2 ) ) )  =  1 ) )  ->  E. e  e.  ZZ  E. f  e.  ZZ  ( ( A  x.  B )  =  ( e  +  ( ( sqr `  D
)  x.  f ) )  /\  ( ( e ^ 2 )  -  ( D  x.  ( f ^ 2 ) ) )  =  1 ) )
11916, 19, 55, 103, 118syl112anc 1330 . . . . . . . . . 10  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  ->  E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) )
1202, 119jca 554 . . . . . . . . 9  |-  ( ( ( ( ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  /\  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( A  x.  B )  e.  RR  /\ 
E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) ) )
121120ex 450 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  (
a  +  ( ( sqr `  D )  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  (
b ^ 2 ) ) )  =  1 ) )  /\  (
c  e.  ZZ  /\  d  e.  ZZ )
)  ->  ( ( B  =  ( c  +  ( ( sqr `  D )  x.  d
) )  /\  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) )  =  1 )  -> 
( ( A  x.  B )  e.  RR  /\ 
E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) ) ) )
122121rexlimdvva 3038 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
( E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 )  ->  (
( A  x.  B
)  e.  RR  /\  E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) ) ) )
123122ex 450 . . . . . 6  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  ( ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  -> 
( E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 )  ->  (
( A  x.  B
)  e.  RR  /\  E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) ) ) ) )
124123rexlimdvva 3038 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D )  x.  d
) )  /\  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) )  =  1 )  -> 
( ( A  x.  B )  e.  RR  /\ 
E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) ) ) ) )
125124impd 447 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  ( A  e.  RR  /\  B  e.  RR ) )  -> 
( ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) )  -> 
( ( A  x.  B )  e.  RR  /\ 
E. e  e.  ZZ  E. f  e.  ZZ  (
( A  x.  B
)  =  ( e  +  ( ( sqr `  D )  x.  f
) )  /\  (
( e ^ 2 )  -  ( D  x.  ( f ^
2 ) ) )  =  1 ) ) ) )
126125expimpd 629 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D )  x.  d
) )  /\  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) )  =  1 ) ) )  ->  ( ( A  x.  B )  e.  RR  /\  E. e  e.  ZZ  E. f  e.  ZZ  ( ( A  x.  B )  =  ( e  +  ( ( sqr `  D
)  x.  f ) )  /\  ( ( e ^ 2 )  -  ( D  x.  ( f ^ 2 ) ) )  =  1 ) ) ) )
127 elpell1234qr 37415 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell1234QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
128 elpell1234qr 37415 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
( B  e.  (Pell1234QR `  D )  <->  ( B  e.  RR  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) ) ) )
129127, 128anbi12d 747 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  e.  (Pell1234QR `  D )  /\  B  e.  (Pell1234QR `  D
) )  <->  ( ( A  e.  RR  /\  E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  /\  ( B  e.  RR  /\ 
E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D )  x.  d
) )  /\  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) )  =  1 ) ) ) ) )
130 an4 865 . . . 4  |-  ( ( ( A  e.  RR  /\ 
E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 ) )  /\  ( B  e.  RR  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D
)  x.  d ) )  /\  ( ( c ^ 2 )  -  ( D  x.  ( d ^ 2 ) ) )  =  1 ) ) )  <-> 
( ( A  e.  RR  /\  B  e.  RR )  /\  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D )  x.  d
) )  /\  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) )  =  1 ) ) ) )
131129, 130syl6bb 276 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  e.  (Pell1234QR `  D )  /\  B  e.  (Pell1234QR `  D
) )  <->  ( ( A  e.  RR  /\  B  e.  RR )  /\  ( E. a  e.  ZZ  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  /\  E. c  e.  ZZ  E. d  e.  ZZ  ( B  =  ( c  +  ( ( sqr `  D )  x.  d
) )  /\  (
( c ^ 2 )  -  ( D  x.  ( d ^
2 ) ) )  =  1 ) ) ) ) )
132 elpell1234qr 37415 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  x.  B )  e.  (Pell1234QR `  D )  <->  ( ( A  x.  B )  e.  RR  /\  E. e  e.  ZZ  E. f  e.  ZZ  ( ( A  x.  B )  =  ( e  +  ( ( sqr `  D
)  x.  f ) )  /\  ( ( e ^ 2 )  -  ( D  x.  ( f ^ 2 ) ) )  =  1 ) ) ) )
133126, 131, 1323imtr4d 283 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  e.  (Pell1234QR `  D )  /\  B  e.  (Pell1234QR `  D
) )  ->  ( A  x.  B )  e.  (Pell1234QR `  D ) ) )
1341333impib 1262 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell1234QR `  D )  /\  B  e.  (Pell1234QR `  D ) )  ->  ( A  x.  B )  e.  (Pell1234QR `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    \ cdif 3571   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   2c2 11070   ZZcz 11377   ^cexp 12860   sqrcsqrt 13973  ◻NNcsquarenn 37400  Pell1234QRcpell1234qr 37402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-pell1234qr 37408
This theorem is referenced by:  pell14qrmulcl  37427
  Copyright terms: Public domain W3C validator