MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1ghm Structured version   Visualization version   Unicode version

Theorem pj1ghm 18116
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a  |-  .+  =  ( +g  `  G )
pj1eu.s  |-  .(+)  =  (
LSSum `  G )
pj1eu.o  |-  .0.  =  ( 0g `  G )
pj1eu.z  |-  Z  =  (Cntz `  G )
pj1eu.2  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
pj1eu.3  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pj1eu.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
pj1eu.5  |-  ( ph  ->  T  C_  ( Z `  U ) )
pj1f.p  |-  P  =  ( proj1 `  G )
Assertion
Ref Expression
pj1ghm  |-  ( ph  ->  ( T P U )  e.  ( ( Gs  ( T  .(+)  U ) )  GrpHom  G ) )

Proof of Theorem pj1ghm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . 2  |-  ( Base `  ( Gs  ( T  .(+)  U ) ) )  =  ( Base `  ( Gs  ( T  .(+)  U ) ) )
2 eqid 2622 . 2  |-  ( Base `  G )  =  (
Base `  G )
3 ovex 6678 . . 3  |-  ( T 
.(+)  U )  e.  _V
4 eqid 2622 . . . 4  |-  ( Gs  ( T  .(+)  U )
)  =  ( Gs  ( T  .(+)  U )
)
5 pj1eu.a . . . 4  |-  .+  =  ( +g  `  G )
64, 5ressplusg 15993 . . 3  |-  ( ( T  .(+)  U )  e.  _V  ->  .+  =  ( +g  `  ( Gs  ( T  .(+)  U )
) ) )
73, 6ax-mp 5 . 2  |-  .+  =  ( +g  `  ( Gs  ( T  .(+)  U )
) )
8 pj1eu.2 . . . 4  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
9 pj1eu.3 . . . 4  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
10 pj1eu.5 . . . 4  |-  ( ph  ->  T  C_  ( Z `  U ) )
11 pj1eu.s . . . . 5  |-  .(+)  =  (
LSSum `  G )
12 pj1eu.z . . . . 5  |-  Z  =  (Cntz `  G )
1311, 12lsmsubg 18069 . . . 4  |-  ( ( T  e.  (SubGrp `  G )  /\  U  e.  (SubGrp `  G )  /\  T  C_  ( Z `
 U ) )  ->  ( T  .(+)  U )  e.  (SubGrp `  G ) )
148, 9, 10, 13syl3anc 1326 . . 3  |-  ( ph  ->  ( T  .(+)  U )  e.  (SubGrp `  G
) )
154subggrp 17597 . . 3  |-  ( ( T  .(+)  U )  e.  (SubGrp `  G )  ->  ( Gs  ( T  .(+)  U ) )  e.  Grp )
1614, 15syl 17 . 2  |-  ( ph  ->  ( Gs  ( T  .(+)  U ) )  e.  Grp )
17 subgrcl 17599 . . 3  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
188, 17syl 17 . 2  |-  ( ph  ->  G  e.  Grp )
19 pj1eu.o . . . . 5  |-  .0.  =  ( 0g `  G )
20 pj1eu.4 . . . . 5  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
21 pj1f.p . . . . 5  |-  P  =  ( proj1 `  G )
225, 11, 19, 12, 8, 9, 20, 10, 21pj1f 18110 . . . 4  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> T )
232subgss 17595 . . . . 5  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
248, 23syl 17 . . . 4  |-  ( ph  ->  T  C_  ( Base `  G ) )
2522, 24fssd 6057 . . 3  |-  ( ph  ->  ( T P U ) : ( T 
.(+)  U ) --> ( Base `  G ) )
264subgbas 17598 . . . . 5  |-  ( ( T  .(+)  U )  e.  (SubGrp `  G )  ->  ( T  .(+)  U )  =  ( Base `  ( Gs  ( T  .(+)  U ) ) ) )
2714, 26syl 17 . . . 4  |-  ( ph  ->  ( T  .(+)  U )  =  ( Base `  ( Gs  ( T  .(+)  U ) ) ) )
2827feq2d 6031 . . 3  |-  ( ph  ->  ( ( T P U ) : ( T  .(+)  U ) --> ( Base `  G )  <->  ( T P U ) : ( Base `  ( Gs  ( T  .(+)  U ) ) ) --> ( Base `  G ) ) )
2925, 28mpbid 222 . 2  |-  ( ph  ->  ( T P U ) : ( Base `  ( Gs  ( T  .(+)  U ) ) ) --> (
Base `  G )
)
3027eleq2d 2687 . . . . 5  |-  ( ph  ->  ( x  e.  ( T  .(+)  U )  <->  x  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) ) ) )
3127eleq2d 2687 . . . . 5  |-  ( ph  ->  ( y  e.  ( T  .(+)  U )  <->  y  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) ) ) )
3230, 31anbi12d 747 . . . 4  |-  ( ph  ->  ( ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
)  <->  ( x  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) )  /\  y  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) ) ) ) )
3332biimpar 502 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) )  /\  y  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) ) ) )  ->  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )
345, 11, 19, 12, 8, 9, 20, 10, 21pj1id 18112 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( T  .(+)  U ) )  ->  x  =  ( ( ( T P U ) `  x )  .+  (
( U P T ) `  x ) ) )
3534adantrr 753 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  x  =  ( ( ( T P U ) `
 x )  .+  ( ( U P T ) `  x
) ) )
365, 11, 19, 12, 8, 9, 20, 10, 21pj1id 18112 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( T  .(+)  U ) )  ->  y  =  ( ( ( T P U ) `  y )  .+  (
( U P T ) `  y ) ) )
3736adantrl 752 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  y  =  ( ( ( T P U ) `
 y )  .+  ( ( U P T ) `  y
) ) )
3835, 37oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
x  .+  y )  =  ( ( ( ( T P U ) `  x ) 
.+  ( ( U P T ) `  x ) )  .+  ( ( ( T P U ) `  y )  .+  (
( U P T ) `  y ) ) ) )
398adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  T  e.  (SubGrp `  G )
)
40 grpmnd 17429 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Mnd )
4139, 17, 403syl 18 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  G  e.  Mnd )
4239, 23syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  T  C_  ( Base `  G
) )
43 simpl 473 . . . . . . . . 9  |-  ( ( x  e.  ( T 
.(+)  U )  /\  y  e.  ( T  .(+)  U ) )  ->  x  e.  ( T  .(+)  U ) )
44 ffvelrn 6357 . . . . . . . . 9  |-  ( ( ( T P U ) : ( T 
.(+)  U ) --> T  /\  x  e.  ( T  .(+) 
U ) )  -> 
( ( T P U ) `  x
)  e.  T )
4522, 43, 44syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( T P U ) `  x )  e.  T )
4642, 45sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( T P U ) `  x )  e.  ( Base `  G
) )
47 simpr 477 . . . . . . . . 9  |-  ( ( x  e.  ( T 
.(+)  U )  /\  y  e.  ( T  .(+)  U ) )  ->  y  e.  ( T  .(+)  U ) )
48 ffvelrn 6357 . . . . . . . . 9  |-  ( ( ( T P U ) : ( T 
.(+)  U ) --> T  /\  y  e.  ( T  .(+) 
U ) )  -> 
( ( T P U ) `  y
)  e.  T )
4922, 47, 48syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( T P U ) `  y )  e.  T )
5042, 49sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( T P U ) `  y )  e.  ( Base `  G
) )
519adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  U  e.  (SubGrp `  G )
)
522subgss 17595 . . . . . . . . 9  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
5351, 52syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  U  C_  ( Base `  G
) )
545, 11, 19, 12, 8, 9, 20, 10, 21pj2f 18111 . . . . . . . . 9  |-  ( ph  ->  ( U P T ) : ( T 
.(+)  U ) --> U )
55 ffvelrn 6357 . . . . . . . . 9  |-  ( ( ( U P T ) : ( T 
.(+)  U ) --> U  /\  x  e.  ( T  .(+) 
U ) )  -> 
( ( U P T ) `  x
)  e.  U )
5654, 43, 55syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( U P T ) `  x )  e.  U )
5753, 56sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( U P T ) `  x )  e.  ( Base `  G
) )
58 ffvelrn 6357 . . . . . . . . 9  |-  ( ( ( U P T ) : ( T 
.(+)  U ) --> U  /\  y  e.  ( T  .(+) 
U ) )  -> 
( ( U P T ) `  y
)  e.  U )
5954, 47, 58syl2an 494 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( U P T ) `  y )  e.  U )
6053, 59sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( U P T ) `  y )  e.  ( Base `  G
) )
6110adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  T  C_  ( Z `  U
) )
6261, 49sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( T P U ) `  y )  e.  ( Z `  U ) )
635, 12cntzi 17762 . . . . . . . 8  |-  ( ( ( ( T P U ) `  y
)  e.  ( Z `
 U )  /\  ( ( U P T ) `  x
)  e.  U )  ->  ( ( ( T P U ) `
 y )  .+  ( ( U P T ) `  x
) )  =  ( ( ( U P T ) `  x
)  .+  ( ( T P U ) `  y ) ) )
6462, 56, 63syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( ( T P U ) `  y
)  .+  ( ( U P T ) `  x ) )  =  ( ( ( U P T ) `  x )  .+  (
( T P U ) `  y ) ) )
652, 5, 41, 46, 50, 57, 60, 64mnd4g 17307 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( ( ( T P U ) `  x )  .+  (
( T P U ) `  y ) )  .+  ( ( ( U P T ) `  x ) 
.+  ( ( U P T ) `  y ) ) )  =  ( ( ( ( T P U ) `  x ) 
.+  ( ( U P T ) `  x ) )  .+  ( ( ( T P U ) `  y )  .+  (
( U P T ) `  y ) ) ) )
6638, 65eqtr4d 2659 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
x  .+  y )  =  ( ( ( ( T P U ) `  x ) 
.+  ( ( T P U ) `  y ) )  .+  ( ( ( U P T ) `  x )  .+  (
( U P T ) `  y ) ) ) )
6720adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  ( T  i^i  U )  =  {  .0.  } )
685subgcl 17604 . . . . . . . 8  |-  ( ( ( T  .(+)  U )  e.  (SubGrp `  G
)  /\  x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
)  ->  ( x  .+  y )  e.  ( T  .(+)  U )
)
69683expb 1266 . . . . . . 7  |-  ( ( ( T  .(+)  U )  e.  (SubGrp `  G
)  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
x  .+  y )  e.  ( T  .(+)  U ) )
7014, 69sylan 488 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
x  .+  y )  e.  ( T  .(+)  U ) )
715subgcl 17604 . . . . . . 7  |-  ( ( T  e.  (SubGrp `  G )  /\  (
( T P U ) `  x )  e.  T  /\  (
( T P U ) `  y )  e.  T )  -> 
( ( ( T P U ) `  x )  .+  (
( T P U ) `  y ) )  e.  T )
7239, 45, 49, 71syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( ( T P U ) `  x
)  .+  ( ( T P U ) `  y ) )  e.  T )
735subgcl 17604 . . . . . . 7  |-  ( ( U  e.  (SubGrp `  G )  /\  (
( U P T ) `  x )  e.  U  /\  (
( U P T ) `  y )  e.  U )  -> 
( ( ( U P T ) `  x )  .+  (
( U P T ) `  y ) )  e.  U )
7451, 56, 59, 73syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( ( U P T ) `  x
)  .+  ( ( U P T ) `  y ) )  e.  U )
755, 11, 19, 12, 39, 51, 67, 61, 21, 70, 72, 74pj1eq 18113 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( x  .+  y
)  =  ( ( ( ( T P U ) `  x
)  .+  ( ( T P U ) `  y ) )  .+  ( ( ( U P T ) `  x )  .+  (
( U P T ) `  y ) ) )  <->  ( (
( T P U ) `  ( x 
.+  y ) )  =  ( ( ( T P U ) `
 x )  .+  ( ( T P U ) `  y
) )  /\  (
( U P T ) `  ( x 
.+  y ) )  =  ( ( ( U P T ) `
 x )  .+  ( ( U P T ) `  y
) ) ) ) )
7666, 75mpbid 222 . . . 4  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( ( T P U ) `  (
x  .+  y )
)  =  ( ( ( T P U ) `  x ) 
.+  ( ( T P U ) `  y ) )  /\  ( ( U P T ) `  (
x  .+  y )
)  =  ( ( ( U P T ) `  x ) 
.+  ( ( U P T ) `  y ) ) ) )
7776simpld 475 . . 3  |-  ( (
ph  /\  ( x  e.  ( T  .(+)  U )  /\  y  e.  ( T  .(+)  U )
) )  ->  (
( T P U ) `  ( x 
.+  y ) )  =  ( ( ( T P U ) `
 x )  .+  ( ( T P U ) `  y
) ) )
7833, 77syldan 487 . 2  |-  ( (
ph  /\  ( x  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) )  /\  y  e.  ( Base `  ( Gs  ( T  .(+)  U ) ) ) ) )  ->  ( ( T P U ) `  ( x  .+  y ) )  =  ( ( ( T P U ) `  x ) 
.+  ( ( T P U ) `  y ) ) )
791, 2, 7, 5, 16, 18, 29, 78isghmd 17669 1  |-  ( ph  ->  ( T P U )  e.  ( ( Gs  ( T  .(+)  U ) )  GrpHom  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   -->wf 5884   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422  SubGrpcsubg 17588    GrpHom cghm 17657  Cntzccntz 17748   LSSumclsm 18049   proj1cpj1 18050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-lsm 18051  df-pj1 18052
This theorem is referenced by:  pj1ghm2  18117  dpjghm  18462  pj1lmhm  19100
  Copyright terms: Public domain W3C validator