MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1lmhm Structured version   Visualization version   Unicode version

Theorem pj1lmhm 19100
Description: The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1lmhm.l  |-  L  =  ( LSubSp `  W )
pj1lmhm.s  |-  .(+)  =  (
LSSum `  W )
pj1lmhm.z  |-  .0.  =  ( 0g `  W )
pj1lmhm.p  |-  P  =  ( proj1 `  W )
pj1lmhm.1  |-  ( ph  ->  W  e.  LMod )
pj1lmhm.2  |-  ( ph  ->  T  e.  L )
pj1lmhm.3  |-  ( ph  ->  U  e.  L )
pj1lmhm.4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
Assertion
Ref Expression
pj1lmhm  |-  ( ph  ->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W ) )

Proof of Theorem pj1lmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( +g  `  W )  =  ( +g  `  W )
2 pj1lmhm.s . . 3  |-  .(+)  =  (
LSSum `  W )
3 pj1lmhm.z . . 3  |-  .0.  =  ( 0g `  W )
4 eqid 2622 . . 3  |-  (Cntz `  W )  =  (Cntz `  W )
5 pj1lmhm.1 . . . . 5  |-  ( ph  ->  W  e.  LMod )
6 pj1lmhm.l . . . . . 6  |-  L  =  ( LSubSp `  W )
76lsssssubg 18958 . . . . 5  |-  ( W  e.  LMod  ->  L  C_  (SubGrp `  W ) )
85, 7syl 17 . . . 4  |-  ( ph  ->  L  C_  (SubGrp `  W
) )
9 pj1lmhm.2 . . . 4  |-  ( ph  ->  T  e.  L )
108, 9sseldd 3604 . . 3  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
11 pj1lmhm.3 . . . 4  |-  ( ph  ->  U  e.  L )
128, 11sseldd 3604 . . 3  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
13 pj1lmhm.4 . . 3  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
14 lmodabl 18910 . . . . 5  |-  ( W  e.  LMod  ->  W  e. 
Abel )
155, 14syl 17 . . . 4  |-  ( ph  ->  W  e.  Abel )
164, 15, 10, 12ablcntzd 18260 . . 3  |-  ( ph  ->  T  C_  ( (Cntz `  W ) `  U
) )
17 pj1lmhm.p . . 3  |-  P  =  ( proj1 `  W )
181, 2, 3, 4, 10, 12, 13, 16, 17pj1ghm 18116 . 2  |-  ( ph  ->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) )  GrpHom  W ) )
19 eqid 2622 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
2019a1i 11 . 2  |-  ( ph  ->  (Scalar `  W )  =  (Scalar `  W )
)
211, 2, 3, 4, 10, 12, 13, 16, 17pj1id 18112 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( T  .(+)  U ) )  ->  y  =  ( ( ( T P U ) `  y ) ( +g  `  W ) ( ( U P T ) `
 y ) ) )
2221adantrl 752 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  y  =  ( ( ( T P U ) `  y
) ( +g  `  W
) ( ( U P T ) `  y ) ) )
2322oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( x ( .s `  W ) y )  =  ( x ( .s `  W ) ( ( ( T P U ) `  y ) ( +g  `  W
) ( ( U P T ) `  y ) ) ) )
245adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  W  e.  LMod )
25 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  x  e.  (
Base `  (Scalar `  W
) ) )
269adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  T  e.  L
)
27 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
2827, 6lssss 18937 . . . . . . . . . 10  |-  ( T  e.  L  ->  T  C_  ( Base `  W
) )
2926, 28syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  T  C_  ( Base `  W ) )
3010adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  T  e.  (SubGrp `  W ) )
3112adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  U  e.  (SubGrp `  W ) )
3213adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( T  i^i  U )  =  {  .0.  } )
3316adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  T  C_  (
(Cntz `  W ) `  U ) )
341, 2, 3, 4, 30, 31, 32, 33, 17pj1f 18110 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( T P U ) : ( T  .(+)  U ) --> T )
35 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  y  e.  ( T  .(+)  U )
)
3634, 35ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( T P U ) `  y )  e.  T
)
3729, 36sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( T P U ) `  y )  e.  (
Base `  W )
)
3811adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  U  e.  L
)
3927, 6lssss 18937 . . . . . . . . . 10  |-  ( U  e.  L  ->  U  C_  ( Base `  W
) )
4038, 39syl 17 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  U  C_  ( Base `  W ) )
411, 2, 3, 4, 30, 31, 32, 33, 17pj2f 18111 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( U P T ) : ( T  .(+)  U ) --> U )
4241, 35ffvelrnd 6360 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( U P T ) `  y )  e.  U
)
4340, 42sseldd 3604 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( U P T ) `  y )  e.  (
Base `  W )
)
44 eqid 2622 . . . . . . . . 9  |-  ( .s
`  W )  =  ( .s `  W
)
45 eqid 2622 . . . . . . . . 9  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
4627, 1, 19, 44, 45lmodvsdi 18886 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  (
x  e.  ( Base `  (Scalar `  W )
)  /\  ( ( T P U ) `  y )  e.  (
Base `  W )  /\  ( ( U P T ) `  y
)  e.  ( Base `  W ) ) )  ->  ( x ( .s `  W ) ( ( ( T P U ) `  y ) ( +g  `  W ) ( ( U P T ) `
 y ) ) )  =  ( ( x ( .s `  W ) ( ( T P U ) `
 y ) ) ( +g  `  W
) ( x ( .s `  W ) ( ( U P T ) `  y
) ) ) )
4724, 25, 37, 43, 46syl13anc 1328 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( x ( .s `  W ) ( ( ( T P U ) `  y ) ( +g  `  W ) ( ( U P T ) `
 y ) ) )  =  ( ( x ( .s `  W ) ( ( T P U ) `
 y ) ) ( +g  `  W
) ( x ( .s `  W ) ( ( U P T ) `  y
) ) ) )
4823, 47eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( x ( .s `  W ) y )  =  ( ( x ( .s
`  W ) ( ( T P U ) `  y ) ) ( +g  `  W
) ( x ( .s `  W ) ( ( U P T ) `  y
) ) ) )
496, 2lsmcl 19083 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  T  e.  L  /\  U  e.  L )  ->  ( T  .(+)  U )  e.  L )
505, 9, 11, 49syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  ( T  .(+)  U )  e.  L )
5150adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( T  .(+)  U )  e.  L )
5219, 44, 45, 6lssvscl 18955 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  ( T  .(+)  U )  e.  L )  /\  ( x  e.  ( Base `  (Scalar `  W
) )  /\  y  e.  ( T  .(+)  U ) ) )  ->  (
x ( .s `  W ) y )  e.  ( T  .(+)  U ) )
5324, 51, 25, 35, 52syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( x ( .s `  W ) y )  e.  ( T  .(+)  U )
)
5419, 44, 45, 6lssvscl 18955 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  T  e.  L )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  ( ( T P U ) `  y
)  e.  T ) )  ->  ( x
( .s `  W
) ( ( T P U ) `  y ) )  e.  T )
5524, 26, 25, 36, 54syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( x ( .s `  W ) ( ( T P U ) `  y
) )  e.  T
)
5619, 44, 45, 6lssvscl 18955 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  U  e.  L )  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  ( ( U P T ) `  y
)  e.  U ) )  ->  ( x
( .s `  W
) ( ( U P T ) `  y ) )  e.  U )
5724, 38, 25, 42, 56syl22anc 1327 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( x ( .s `  W ) ( ( U P T ) `  y
) )  e.  U
)
581, 2, 3, 4, 30, 31, 32, 33, 17, 53, 55, 57pj1eq 18113 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( x ( .s `  W
) y )  =  ( ( x ( .s `  W ) ( ( T P U ) `  y
) ) ( +g  `  W ) ( x ( .s `  W
) ( ( U P T ) `  y ) ) )  <-> 
( ( ( T P U ) `  ( x ( .s
`  W ) y ) )  =  ( x ( .s `  W ) ( ( T P U ) `
 y ) )  /\  ( ( U P T ) `  ( x ( .s
`  W ) y ) )  =  ( x ( .s `  W ) ( ( U P T ) `
 y ) ) ) ) )
5948, 58mpbid 222 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) )  /\  ( ( U P T ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( U P T ) `  y ) ) ) )
6059simpld 475 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  (Scalar `  W ) )  /\  y  e.  ( T  .(+) 
U ) ) )  ->  ( ( T P U ) `  ( x ( .s
`  W ) y ) )  =  ( x ( .s `  W ) ( ( T P U ) `
 y ) ) )
6160ralrimivva 2971 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  (Scalar `  W
) ) A. y  e.  ( T  .(+)  U ) ( ( T P U ) `  (
x ( .s `  W ) y ) )  =  ( x ( .s `  W
) ( ( T P U ) `  y ) ) )
628, 50sseldd 3604 . . . . . 6  |-  ( ph  ->  ( T  .(+)  U )  e.  (SubGrp `  W
) )
63 eqid 2622 . . . . . . 7  |-  ( Ws  ( T  .(+)  U )
)  =  ( Ws  ( T  .(+)  U )
)
6463subgbas 17598 . . . . . 6  |-  ( ( T  .(+)  U )  e.  (SubGrp `  W )  ->  ( T  .(+)  U )  =  ( Base `  ( Ws  ( T  .(+)  U ) ) ) )
6562, 64syl 17 . . . . 5  |-  ( ph  ->  ( T  .(+)  U )  =  ( Base `  ( Ws  ( T  .(+)  U ) ) ) )
6665raleqdv 3144 . . . 4  |-  ( ph  ->  ( A. y  e.  ( T  .(+)  U ) ( ( T P U ) `  (
x ( .s `  W ) y ) )  =  ( x ( .s `  W
) ( ( T P U ) `  y ) )  <->  A. y  e.  ( Base `  ( Ws  ( T  .(+)  U ) ) ) ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) ) ) )
6766ralbidv 2986 . . 3  |-  ( ph  ->  ( A. x  e.  ( Base `  (Scalar `  W ) ) A. y  e.  ( T  .(+) 
U ) ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) )  <->  A. x  e.  (
Base `  (Scalar `  W
) ) A. y  e.  ( Base `  ( Ws  ( T  .(+)  U ) ) ) ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) ) ) )
6861, 67mpbid 222 . 2  |-  ( ph  ->  A. x  e.  (
Base `  (Scalar `  W
) ) A. y  e.  ( Base `  ( Ws  ( T  .(+)  U ) ) ) ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) ) )
6963, 6lsslmod 18960 . . . 4  |-  ( ( W  e.  LMod  /\  ( T  .(+)  U )  e.  L )  ->  ( Ws  ( T  .(+)  U ) )  e.  LMod )
705, 50, 69syl2anc 693 . . 3  |-  ( ph  ->  ( Ws  ( T  .(+)  U ) )  e.  LMod )
71 ovex 6678 . . . . 5  |-  ( T 
.(+)  U )  e.  _V
7263, 19resssca 16031 . . . . 5  |-  ( ( T  .(+)  U )  e.  _V  ->  (Scalar `  W
)  =  (Scalar `  ( Ws  ( T  .(+)  U ) ) ) )
7371, 72ax-mp 5 . . . 4  |-  (Scalar `  W )  =  (Scalar `  ( Ws  ( T  .(+)  U ) ) )
74 eqid 2622 . . . 4  |-  ( Base `  ( Ws  ( T  .(+)  U ) ) )  =  ( Base `  ( Ws  ( T  .(+)  U ) ) )
7563, 44ressvsca 16032 . . . . 5  |-  ( ( T  .(+)  U )  e.  _V  ->  ( .s `  W )  =  ( .s `  ( Ws  ( T  .(+)  U )
) ) )
7671, 75ax-mp 5 . . . 4  |-  ( .s
`  W )  =  ( .s `  ( Ws  ( T  .(+)  U ) ) )
7773, 19, 45, 74, 76, 44islmhm3 19028 . . 3  |-  ( ( ( Ws  ( T  .(+)  U ) )  e.  LMod  /\  W  e.  LMod )  ->  ( ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W )  <-> 
( ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) )  GrpHom  W )  /\  (Scalar `  W
)  =  (Scalar `  W )  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. y  e.  ( Base `  ( Ws  ( T  .(+)  U ) ) ) ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) ) ) ) )
7870, 5, 77syl2anc 693 . 2  |-  ( ph  ->  ( ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W )  <-> 
( ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) )  GrpHom  W )  /\  (Scalar `  W
)  =  (Scalar `  W )  /\  A. x  e.  ( Base `  (Scalar `  W )
) A. y  e.  ( Base `  ( Ws  ( T  .(+)  U ) ) ) ( ( T P U ) `
 ( x ( .s `  W ) y ) )  =  ( x ( .s
`  W ) ( ( T P U ) `  y ) ) ) ) )
7918, 20, 68, 78mpbir3and 1245 1  |-  ( ph  ->  ( T P U )  e.  ( ( Ws  ( T  .(+)  U ) ) LMHom  W ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   0gc0g 16100  SubGrpcsubg 17588    GrpHom cghm 17657  Cntzccntz 17748   LSSumclsm 18049   proj1cpj1 18050   Abelcabl 18194   LModclmod 18863   LSubSpclss 18932   LMHom clmhm 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022
This theorem is referenced by:  pj1lmhm2  19101  pjff  20056
  Copyright terms: Public domain W3C validator