MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfo Structured version   Visualization version   Unicode version

Theorem pjfo 20059
Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k  |-  K  =  ( proj `  W
)
pjf.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
pjfo  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( K `  T
) : V -onto-> T
)

Proof of Theorem pjfo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pjf.k . . 3  |-  K  =  ( proj `  W
)
2 pjf.v . . 3  |-  V  =  ( Base `  W
)
31, 2pjf2 20058 . 2  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( K `  T
) : V --> T )
4 frn 6053 . . . 4  |-  ( ( K `  T ) : V --> T  ->  ran  ( K `  T
)  C_  T )
53, 4syl 17 . . 3  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  ran  ( K `  T
)  C_  T )
6 eqid 2622 . . . . . . . . . 10  |-  ( ocv `  W )  =  ( ocv `  W )
7 eqid 2622 . . . . . . . . . 10  |-  ( proj1 `  W )  =  ( proj1 `  W )
86, 7, 1pjval 20054 . . . . . . . . 9  |-  ( T  e.  dom  K  -> 
( K `  T
)  =  ( T ( proj1 `  W ) ( ( ocv `  W ) `
 T ) ) )
98ad2antlr 763 . . . . . . . 8  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  ( K `  T )  =  ( T (
proj1 `  W
) ( ( ocv `  W ) `  T
) ) )
109fveq1d 6193 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  (
( K `  T
) `  x )  =  ( ( T ( proj1 `  W ) ( ( ocv `  W ) `
 T ) ) `
 x ) )
11 eqid 2622 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
12 eqid 2622 . . . . . . . 8  |-  ( LSSum `  W )  =  (
LSSum `  W )
13 eqid 2622 . . . . . . . 8  |-  ( 0g
`  W )  =  ( 0g `  W
)
14 eqid 2622 . . . . . . . 8  |-  (Cntz `  W )  =  (Cntz `  W )
15 phllmod 19975 . . . . . . . . . . 11  |-  ( W  e.  PreHil  ->  W  e.  LMod )
1615adantr 481 . . . . . . . . . 10  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  W  e.  LMod )
17 eqid 2622 . . . . . . . . . . 11  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
1817lsssssubg 18958 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  ( LSubSp `  W )  C_  (SubGrp `  W ) )
1916, 18syl 17 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( LSubSp `  W )  C_  (SubGrp `  W )
)
202, 17, 6, 12, 1pjdm2 20055 . . . . . . . . . 10  |-  ( W  e.  PreHil  ->  ( T  e. 
dom  K  <->  ( T  e.  ( LSubSp `  W )  /\  ( T ( LSSum `  W ) ( ( ocv `  W ) `
 T ) )  =  V ) ) )
2120simprbda 653 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  T  e.  ( LSubSp `  W ) )
2219, 21sseldd 3604 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  T  e.  (SubGrp `  W
) )
232, 17lssss 18937 . . . . . . . . . . 11  |-  ( T  e.  ( LSubSp `  W
)  ->  T  C_  V
)
2421, 23syl 17 . . . . . . . . . 10  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  T  C_  V )
252, 6, 17ocvlss 20016 . . . . . . . . . 10  |-  ( ( W  e.  PreHil  /\  T  C_  V )  ->  (
( ocv `  W
) `  T )  e.  ( LSubSp `  W )
)
2624, 25syldan 487 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( ( ocv `  W
) `  T )  e.  ( LSubSp `  W )
)
2719, 26sseldd 3604 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( ( ocv `  W
) `  T )  e.  (SubGrp `  W )
)
286, 17, 13ocvin 20018 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  T  e.  ( LSubSp `  W )
)  ->  ( T  i^i  ( ( ocv `  W
) `  T )
)  =  { ( 0g `  W ) } )
2921, 28syldan 487 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( T  i^i  (
( ocv `  W
) `  T )
)  =  { ( 0g `  W ) } )
30 lmodabl 18910 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  W  e. 
Abel )
3116, 30syl 17 . . . . . . . . 9  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  W  e.  Abel )
3214, 31, 22, 27ablcntzd 18260 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  T  C_  ( (Cntz `  W ) `  (
( ocv `  W
) `  T )
) )
3311, 12, 13, 14, 22, 27, 29, 32, 7pj1lid 18114 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  (
( T ( proj1 `  W )
( ( ocv `  W
) `  T )
) `  x )  =  x )
3410, 33eqtrd 2656 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  (
( K `  T
) `  x )  =  x )
35 ffn 6045 . . . . . . . . 9  |-  ( ( K `  T ) : V --> T  -> 
( K `  T
)  Fn  V )
363, 35syl 17 . . . . . . . 8  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( K `  T
)  Fn  V )
3736adantr 481 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  ( K `  T )  Fn  V )
3824sselda 3603 . . . . . . 7  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  x  e.  V )
39 fnfvelrn 6356 . . . . . . 7  |-  ( ( ( K `  T
)  Fn  V  /\  x  e.  V )  ->  ( ( K `  T ) `  x
)  e.  ran  ( K `  T )
)
4037, 38, 39syl2anc 693 . . . . . 6  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  (
( K `  T
) `  x )  e.  ran  ( K `  T ) )
4134, 40eqeltrrd 2702 . . . . 5  |-  ( ( ( W  e.  PreHil  /\  T  e.  dom  K
)  /\  x  e.  T )  ->  x  e.  ran  ( K `  T ) )
4241ex 450 . . . 4  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( x  e.  T  ->  x  e.  ran  ( K `  T )
) )
4342ssrdv 3609 . . 3  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  T  C_  ran  ( K `
 T ) )
445, 43eqssd 3620 . 2  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  ->  ran  ( K `  T
)  =  T )
45 dffo2 6119 . 2  |-  ( ( K `  T ) : V -onto-> T  <->  ( ( K `  T ) : V --> T  /\  ran  ( K `  T )  =  T ) )
463, 44, 45sylanbrc 698 1  |-  ( ( W  e.  PreHil  /\  T  e.  dom  K )  -> 
( K `  T
) : V -onto-> T
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   {csn 4177   dom cdm 5114   ran crn 5115    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100  SubGrpcsubg 17588  Cntzccntz 17748   LSSumclsm 18049   proj1cpj1 18050   Abelcabl 18194   LModclmod 18863   LSubSpclss 18932   PreHilcphl 19969   ocvcocv 20004   projcpj 20044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-ip 15959  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cntz 17750  df-lsm 18051  df-pj1 18052  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-phl 19971  df-ocv 20007  df-pj 20047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator