MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgneu Structured version   Visualization version   Unicode version

Theorem psgneu 17926
Description: A finitary permutation has exactly one parity. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g  |-  G  =  ( SymGrp `  D )
psgnval.t  |-  T  =  ran  (pmTrsp `  D
)
psgnval.n  |-  N  =  (pmSgn `  D )
Assertion
Ref Expression
psgneu  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Distinct variable groups:    w, s, G    N, s, w    P, s, w    T, s, w    D, s, w

Proof of Theorem psgneu
Dummy variables  t  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . . . . . . 9  |-  G  =  ( SymGrp `  D )
2 psgnval.n . . . . . . . . 9  |-  N  =  (pmSgn `  D )
3 eqid 2622 . . . . . . . . 9  |-  ( Base `  G )  =  (
Base `  G )
41, 2, 3psgneldm 17923 . . . . . . . 8  |-  ( P  e.  dom  N  <->  ( P  e.  ( Base `  G
)  /\  dom  ( P 
\  _I  )  e. 
Fin ) )
54simplbi 476 . . . . . . 7  |-  ( P  e.  dom  N  ->  P  e.  ( Base `  G ) )
61, 3elbasfv 15920 . . . . . . 7  |-  ( P  e.  ( Base `  G
)  ->  D  e.  _V )
75, 6syl 17 . . . . . 6  |-  ( P  e.  dom  N  ->  D  e.  _V )
8 psgnval.t . . . . . . 7  |-  T  =  ran  (pmTrsp `  D
)
91, 8, 2psgneldm2 17924 . . . . . 6  |-  ( D  e.  _V  ->  ( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
107, 9syl 17 . . . . 5  |-  ( P  e.  dom  N  -> 
( P  e.  dom  N  <->  E. w  e. Word  T P  =  ( G  gsumg  w ) ) )
1110ibi 256 . . . 4  |-  ( P  e.  dom  N  ->  E. w  e. Word  T P  =  ( G  gsumg  w ) )
12 simpr 477 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  P  =  ( G  gsumg  w ) )
13 eqid 2622 . . . . . . 7  |-  ( -u
1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) )
14 ovex 6678 . . . . . . . 8  |-  ( -u
1 ^ ( # `  w ) )  e. 
_V
15 eqeq1 2626 . . . . . . . . 9  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) )
1615anbi2d 740 . . . . . . . 8  |-  ( s  =  ( -u 1 ^ ( # `  w
) )  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
1714, 16spcev 3300 . . . . . . 7  |-  ( ( P  =  ( G 
gsumg  w )  /\  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  w
) ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1812, 13, 17sylancl 694 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  w  e. Word  T
)  /\  P  =  ( G  gsumg  w ) )  ->  E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
1918ex 450 . . . . 5  |-  ( ( P  e.  dom  N  /\  w  e. Word  T )  ->  ( P  =  ( G  gsumg  w )  ->  E. s
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2019reximdva 3017 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T P  =  ( G  gsumg  w )  ->  E. w  e. Word  T E. s ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) ) )
2111, 20mpd 15 . . 3  |-  ( P  e.  dom  N  ->  E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
22 rexcom4 3225 . . 3  |-  ( E. w  e. Word  T E. s ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. s E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
2321, 22sylib 208 . 2  |-  ( P  e.  dom  N  ->  E. s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
24 reeanv 3107 . . . 4  |-  ( E. w  e. Word  T E. x  e. Word  T (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  <-> 
( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
257ad2antrr 762 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  D  e.  _V )
26 simplrl 800 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  w  e. Word  T )
27 simplrr 801 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  x  e. Word  T )
28 simprll 802 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  w ) )
29 simprrl 804 . . . . . . . . 9  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  P  =  ( G  gsumg  x ) )
3028, 29eqtr3d 2658 . . . . . . . 8  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( G  gsumg  w )  =  ( G 
gsumg  x ) )
311, 8, 25, 26, 27, 30psgnuni 17919 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  ( -u 1 ^ ( # `  w
) )  =  (
-u 1 ^ ( # `
 x ) ) )
32 simprlr 803 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  ( -u 1 ^ ( # `
 w ) ) )
33 simprrr 805 . . . . . . 7  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  t  =  ( -u 1 ^ ( # `
 x ) ) )
3431, 32, 333eqtr4d 2666 . . . . . 6  |-  ( ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T
) )  /\  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )  ->  s  =  t )
3534ex 450 . . . . 5  |-  ( ( P  e.  dom  N  /\  ( w  e. Word  T  /\  x  e. Word  T ) )  ->  ( (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3635rexlimdvva 3038 . . . 4  |-  ( P  e.  dom  N  -> 
( E. w  e. Word  T E. x  e. Word  T
( ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3724, 36syl5bir 233 . . 3  |-  ( P  e.  dom  N  -> 
( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
3837alrimivv 1856 . 2  |-  ( P  e.  dom  N  ->  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) )
39 eqeq1 2626 . . . . . 6  |-  ( s  =  t  ->  (
s  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 w ) ) ) )
4039anbi2d 740 . . . . 5  |-  ( s  =  t  ->  (
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  w )  /\  t  =  (
-u 1 ^ ( # `
 w ) ) ) ) )
4140rexbidv 3052 . . . 4  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) ) ) )
42 oveq2 6658 . . . . . . 7  |-  ( w  =  x  ->  ( G  gsumg  w )  =  ( G  gsumg  x ) )
4342eqeq2d 2632 . . . . . 6  |-  ( w  =  x  ->  ( P  =  ( G  gsumg  w )  <->  P  =  ( G  gsumg  x ) ) )
44 fveq2 6191 . . . . . . . 8  |-  ( w  =  x  ->  ( # `
 w )  =  ( # `  x
) )
4544oveq2d 6666 . . . . . . 7  |-  ( w  =  x  ->  ( -u 1 ^ ( # `  w ) )  =  ( -u 1 ^ ( # `  x
) ) )
4645eqeq2d 2632 . . . . . 6  |-  ( w  =  x  ->  (
t  =  ( -u
1 ^ ( # `  w ) )  <->  t  =  ( -u 1 ^ ( # `
 x ) ) ) )
4743, 46anbi12d 747 . . . . 5  |-  ( w  =  x  ->  (
( P  =  ( G  gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( P  =  ( G  gsumg  x )  /\  t  =  (
-u 1 ^ ( # `
 x ) ) ) ) )
4847cbvrexv 3172 . . . 4  |-  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  t  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )
4941, 48syl6bb 276 . . 3  |-  ( s  =  t  ->  ( E. w  e. Word  T ( P  =  ( G 
gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  E. x  e. Word  T ( P  =  ( G  gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) ) )
5049eu4 2518 . 2  |-  ( E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  <->  ( E. s E. w  e. Word  T
( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  A. s A. t ( ( E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) )  /\  E. x  e. Word  T ( P  =  ( G 
gsumg  x )  /\  t  =  ( -u 1 ^ ( # `  x
) ) ) )  ->  s  =  t ) ) )
5123, 38, 50sylanbrc 698 1  |-  ( P  e.  dom  N  ->  E! s E. w  e. Word  T ( P  =  ( G  gsumg  w )  /\  s  =  ( -u 1 ^ ( # `  w
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   E.wrex 2913   _Vcvv 3200    \ cdif 3571    _I cid 5023   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955   1c1 9937   -ucneg 10267   ^cexp 12860   #chash 13117  Word cword 13291   Basecbs 15857    gsumg cgsu 16101   SymGrpcsymg 17797  pmTrspcpmtr 17861  pmSgncpsgn 17909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862  df-psgn 17911
This theorem is referenced by:  psgnvali  17928  psgnvalii  17929  psgnfieu  17938
  Copyright terms: Public domain W3C validator