MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnuni Structured version   Visualization version   Unicode version

Theorem psgnuni 17919
Description: If the same permutation can be written in more than one way as a product of transpositions, the parity of those products must agree; otherwise the product of one with the inverse of the other would be an odd representation of the identity. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypotheses
Ref Expression
psgnuni.g  |-  G  =  ( SymGrp `  D )
psgnuni.t  |-  T  =  ran  (pmTrsp `  D
)
psgnuni.d  |-  ( ph  ->  D  e.  V )
psgnuni.w  |-  ( ph  ->  W  e. Word  T )
psgnuni.x  |-  ( ph  ->  X  e. Word  T )
psgnuni.e  |-  ( ph  ->  ( G  gsumg  W )  =  ( G  gsumg  X ) )
Assertion
Ref Expression
psgnuni  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  =  (
-u 1 ^ ( # `
 X ) ) )

Proof of Theorem psgnuni
StepHypRef Expression
1 psgnuni.w . . . . . 6  |-  ( ph  ->  W  e. Word  T )
2 lencl 13324 . . . . . 6  |-  ( W  e. Word  T  ->  ( # `
 W )  e. 
NN0 )
31, 2syl 17 . . . . 5  |-  ( ph  ->  ( # `  W
)  e.  NN0 )
43nn0zd 11480 . . . 4  |-  ( ph  ->  ( # `  W
)  e.  ZZ )
5 m1expcl 12883 . . . 4  |-  ( (
# `  W )  e.  ZZ  ->  ( -u 1 ^ ( # `  W
) )  e.  ZZ )
64, 5syl 17 . . 3  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  e.  ZZ )
76zcnd 11483 . 2  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  e.  CC )
8 psgnuni.x . . . . . 6  |-  ( ph  ->  X  e. Word  T )
9 lencl 13324 . . . . . 6  |-  ( X  e. Word  T  ->  ( # `
 X )  e. 
NN0 )
108, 9syl 17 . . . . 5  |-  ( ph  ->  ( # `  X
)  e.  NN0 )
1110nn0zd 11480 . . . 4  |-  ( ph  ->  ( # `  X
)  e.  ZZ )
12 m1expcl 12883 . . . 4  |-  ( (
# `  X )  e.  ZZ  ->  ( -u 1 ^ ( # `  X
) )  e.  ZZ )
1311, 12syl 17 . . 3  |-  ( ph  ->  ( -u 1 ^ ( # `  X
) )  e.  ZZ )
1413zcnd 11483 . 2  |-  ( ph  ->  ( -u 1 ^ ( # `  X
) )  e.  CC )
15 neg1cn 11124 . . . 4  |-  -u 1  e.  CC
16 neg1ne0 11126 . . . 4  |-  -u 1  =/=  0
17 expne0i 12892 . . . 4  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0  /\  ( # `  X
)  e.  ZZ )  ->  ( -u 1 ^ ( # `  X
) )  =/=  0
)
1815, 16, 17mp3an12 1414 . . 3  |-  ( (
# `  X )  e.  ZZ  ->  ( -u 1 ^ ( # `  X
) )  =/=  0
)
1911, 18syl 17 . 2  |-  ( ph  ->  ( -u 1 ^ ( # `  X
) )  =/=  0
)
20 m1expaddsub 17918 . . . . 5  |-  ( ( ( # `  W
)  e.  ZZ  /\  ( # `  X )  e.  ZZ )  -> 
( -u 1 ^ (
( # `  W )  -  ( # `  X
) ) )  =  ( -u 1 ^ ( ( # `  W
)  +  ( # `  X ) ) ) )
214, 11, 20syl2anc 693 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( # `  W
)  -  ( # `  X ) ) )  =  ( -u 1 ^ ( ( # `  W )  +  (
# `  X )
) ) )
22 expsub 12908 . . . . . 6  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( # `  W )  e.  ZZ  /\  ( # `
 X )  e.  ZZ ) )  -> 
( -u 1 ^ (
( # `  W )  -  ( # `  X
) ) )  =  ( ( -u 1 ^ ( # `  W
) )  /  ( -u 1 ^ ( # `  X ) ) ) )
2315, 16, 22mpanl12 718 . . . . 5  |-  ( ( ( # `  W
)  e.  ZZ  /\  ( # `  X )  e.  ZZ )  -> 
( -u 1 ^ (
( # `  W )  -  ( # `  X
) ) )  =  ( ( -u 1 ^ ( # `  W
) )  /  ( -u 1 ^ ( # `  X ) ) ) )
244, 11, 23syl2anc 693 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( ( # `  W
)  -  ( # `  X ) ) )  =  ( ( -u
1 ^ ( # `  W ) )  / 
( -u 1 ^ ( # `
 X ) ) ) )
2521, 24eqtr3d 2658 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( # `  W
)  +  ( # `  X ) ) )  =  ( ( -u
1 ^ ( # `  W ) )  / 
( -u 1 ^ ( # `
 X ) ) ) )
26 revcl 13510 . . . . . . . 8  |-  ( X  e. Word  T  ->  (reverse `  X )  e. Word  T
)
278, 26syl 17 . . . . . . 7  |-  ( ph  ->  (reverse `  X )  e. Word  T )
28 ccatlen 13360 . . . . . . 7  |-  ( ( W  e. Word  T  /\  (reverse `  X )  e. Word  T )  ->  ( # `
 ( W ++  (reverse `  X ) ) )  =  ( ( # `  W )  +  (
# `  (reverse `  X
) ) ) )
291, 27, 28syl2anc 693 . . . . . 6  |-  ( ph  ->  ( # `  ( W ++  (reverse `  X )
) )  =  ( ( # `  W
)  +  ( # `  (reverse `  X )
) ) )
30 revlen 13511 . . . . . . . 8  |-  ( X  e. Word  T  ->  ( # `
 (reverse `  X
) )  =  (
# `  X )
)
318, 30syl 17 . . . . . . 7  |-  ( ph  ->  ( # `  (reverse `  X ) )  =  ( # `  X
) )
3231oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( ( # `  W
)  +  ( # `  (reverse `  X )
) )  =  ( ( # `  W
)  +  ( # `  X ) ) )
3329, 32eqtrd 2656 . . . . 5  |-  ( ph  ->  ( # `  ( W ++  (reverse `  X )
) )  =  ( ( # `  W
)  +  ( # `  X ) ) )
3433oveq2d 6666 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( # `  ( W ++  (reverse `  X )
) ) )  =  ( -u 1 ^ ( ( # `  W
)  +  ( # `  X ) ) ) )
35 psgnuni.g . . . . 5  |-  G  =  ( SymGrp `  D )
36 psgnuni.t . . . . 5  |-  T  =  ran  (pmTrsp `  D
)
37 psgnuni.d . . . . 5  |-  ( ph  ->  D  e.  V )
38 ccatcl 13359 . . . . . 6  |-  ( ( W  e. Word  T  /\  (reverse `  X )  e. Word  T )  ->  ( W ++  (reverse `  X )
)  e. Word  T )
391, 27, 38syl2anc 693 . . . . 5  |-  ( ph  ->  ( W ++  (reverse `  X
) )  e. Word  T
)
40 psgnuni.e . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg  W )  =  ( G  gsumg  X ) )
4140fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( ( invg `  G ) `  ( G  gsumg  W ) )  =  ( ( invg `  G ) `  ( G  gsumg  X ) ) )
42 eqid 2622 . . . . . . . . . . 11  |-  ( invg `  G )  =  ( invg `  G )
4336, 35, 42symgtrinv 17892 . . . . . . . . . 10  |-  ( ( D  e.  V  /\  X  e. Word  T )  ->  ( ( invg `  G ) `  ( G  gsumg  X ) )  =  ( G  gsumg  (reverse `  X )
) )
4437, 8, 43syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( invg `  G ) `  ( G  gsumg  X ) )  =  ( G  gsumg  (reverse `  X )
) )
4541, 44eqtr2d 2657 . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  (reverse `  X )
)  =  ( ( invg `  G
) `  ( G  gsumg  W ) ) )
4645oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( ( G  gsumg  W ) ( +g  `  G
) ( G  gsumg  (reverse `  X
) ) )  =  ( ( G  gsumg  W ) ( +g  `  G
) ( ( invg `  G ) `
 ( G  gsumg  W ) ) ) )
4735symggrp 17820 . . . . . . . . 9  |-  ( D  e.  V  ->  G  e.  Grp )
4837, 47syl 17 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
49 grpmnd 17429 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e.  Mnd )
5048, 49syl 17 . . . . . . . . 9  |-  ( ph  ->  G  e.  Mnd )
51 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  G )  =  (
Base `  G )
5236, 35, 51symgtrf 17889 . . . . . . . . . . 11  |-  T  C_  ( Base `  G )
53 sswrd 13313 . . . . . . . . . . 11  |-  ( T 
C_  ( Base `  G
)  -> Word  T  C_ Word  ( Base `  G ) )
5452, 53ax-mp 5 . . . . . . . . . 10  |- Word  T  C_ Word  (
Base `  G )
5554, 1sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  W  e. Word  ( Base `  G ) )
5651gsumwcl 17377 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  W  e. Word  ( Base `  G
) )  ->  ( G  gsumg  W )  e.  (
Base `  G )
)
5750, 55, 56syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( G  gsumg  W )  e.  (
Base `  G )
)
58 eqid 2622 . . . . . . . . 9  |-  ( +g  `  G )  =  ( +g  `  G )
59 eqid 2622 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
6051, 58, 59, 42grprinv 17469 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( G  gsumg  W )  e.  (
Base `  G )
)  ->  ( ( G  gsumg  W ) ( +g  `  G ) ( ( invg `  G
) `  ( G  gsumg  W ) ) )  =  ( 0g `  G
) )
6148, 57, 60syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( G  gsumg  W ) ( +g  `  G
) ( ( invg `  G ) `
 ( G  gsumg  W ) ) )  =  ( 0g `  G ) )
6246, 61eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( G  gsumg  W ) ( +g  `  G
) ( G  gsumg  (reverse `  X
) ) )  =  ( 0g `  G
) )
6354, 27sseldi 3601 . . . . . . 7  |-  ( ph  ->  (reverse `  X )  e. Word  ( Base `  G
) )
6451, 58gsumccat 17378 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  W  e. Word  ( Base `  G
)  /\  (reverse `  X
)  e. Word  ( Base `  G ) )  -> 
( G  gsumg  ( W ++  (reverse `  X
) ) )  =  ( ( G  gsumg  W ) ( +g  `  G
) ( G  gsumg  (reverse `  X
) ) ) )
6550, 55, 63, 64syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( W ++  (reverse `  X
) ) )  =  ( ( G  gsumg  W ) ( +g  `  G
) ( G  gsumg  (reverse `  X
) ) ) )
6635symgid 17821 . . . . . . 7  |-  ( D  e.  V  ->  (  _I  |`  D )  =  ( 0g `  G
) )
6737, 66syl 17 . . . . . 6  |-  ( ph  ->  (  _I  |`  D )  =  ( 0g `  G ) )
6862, 65, 673eqtr4d 2666 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( W ++  (reverse `  X
) ) )  =  (  _I  |`  D ) )
6935, 36, 37, 39, 68psgnunilem4 17917 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( # `  ( W ++  (reverse `  X )
) ) )  =  1 )
7034, 69eqtr3d 2658 . . 3  |-  ( ph  ->  ( -u 1 ^ ( ( # `  W
)  +  ( # `  X ) ) )  =  1 )
7125, 70eqtr3d 2658 . 2  |-  ( ph  ->  ( ( -u 1 ^ ( # `  W
) )  /  ( -u 1 ^ ( # `  X ) ) )  =  1 )
727, 14, 19, 71diveq1d 10809 1  |-  ( ph  ->  ( -u 1 ^ ( # `  W
) )  =  (
-u 1 ^ ( # `
 X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574    _I cid 5023   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   -ucneg 10267    / cdiv 10684   NN0cn0 11292   ZZcz 11377   ^cexp 12860   #chash 13117  Word cword 13291   ++ cconcat 13293  reversecreverse 13297   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   invgcminusg 17423   SymGrpcsymg 17797  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-reverse 13305  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-ghm 17658  df-gim 17701  df-oppg 17776  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  psgneu  17926  psgndiflemA  19947
  Copyright terms: Public domain W3C validator