MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zbtwnre Structured version   Visualization version   Unicode version

Theorem zbtwnre 11786
Description: There is a unique integer between a real number and the number plus one. Exercise 5 of [Apostol] p. 28. (Contributed by NM, 13-Nov-2004.)
Assertion
Ref Expression
zbtwnre  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Distinct variable group:    x, A

Proof of Theorem zbtwnre
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 zmin 11784 . 2  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
2 zre 11381 . . . . . . . . . . . 12  |-  ( y  e.  ZZ  ->  y  e.  RR )
3 zre 11381 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  x  e.  RR )
4 peano2rem 10348 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
53, 4syl 17 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  RR )
6 ltletr 10129 . . . . . . . . . . . . . 14  |-  ( ( ( x  -  1 )  e.  RR  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
75, 6syl3an1 1359 . . . . . . . . . . . . 13  |-  ( ( x  e.  ZZ  /\  A  e.  RR  /\  y  e.  RR )  ->  (
( ( x  - 
1 )  <  A  /\  A  <_  y )  ->  ( x  - 
1 )  <  y
) )
873expa 1265 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  RR )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
92, 8sylan2 491 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  (
x  -  1 )  <  y ) )
10 zlem1lt 11429 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  <_  y  <->  ( x  -  1 )  <  y ) )
1110adantlr 751 . . . . . . . . . . 11  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( x  <_ 
y  <->  ( x  - 
1 )  <  y
) )
129, 11sylibrd 249 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  y  e.  ZZ )  ->  ( ( ( x  -  1 )  <  A  /\  A  <_  y )  ->  x  <_  y ) )
1312exp4b 632 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( y  e.  ZZ  ->  ( ( x  - 
1 )  <  A  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1413com23 86 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  ( y  e.  ZZ  ->  ( A  <_  y  ->  x  <_  y )
) ) )
1514ralrimdv 2968 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  ->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
165ltnrd 10171 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  -.  ( x  -  1
)  <  ( x  -  1 ) )
17 peano2zm 11420 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x  -  1 )  e.  ZZ )
18 zlem1lt 11429 . . . . . . . . . . . 12  |-  ( ( x  e.  ZZ  /\  ( x  -  1
)  e.  ZZ )  ->  ( x  <_ 
( x  -  1 )  <->  ( x  - 
1 )  <  (
x  -  1 ) ) )
1917, 18mpdan 702 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  (
x  <_  ( x  -  1 )  <->  ( x  -  1 )  < 
( x  -  1 ) ) )
2016, 19mtbird 315 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  -.  x  <_  ( x  - 
1 ) )
2120ad2antrr 762 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  -.  x  <_  ( x  - 
1 ) )
22 lenlt 10116 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( x  -  1
)  e.  RR )  ->  ( A  <_ 
( x  -  1 )  <->  -.  ( x  -  1 )  < 
A ) )
235, 22sylan2 491 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2423ancoms 469 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A  <_  (
x  -  1 )  <->  -.  ( x  -  1 )  <  A ) )
2524adantr 481 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  <->  -.  (
x  -  1 )  <  A ) )
26 breq2 4657 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  ( A  <_  y  <->  A  <_  ( x  -  1 ) ) )
27 breq2 4657 . . . . . . . . . . . . . . 15  |-  ( y  =  ( x  - 
1 )  ->  (
x  <_  y  <->  x  <_  ( x  -  1 ) ) )
2826, 27imbi12d 334 . . . . . . . . . . . . . 14  |-  ( y  =  ( x  - 
1 )  ->  (
( A  <_  y  ->  x  <_  y )  <->  ( A  <_  ( x  -  1 )  ->  x  <_  ( x  - 
1 ) ) ) )
2928rspcv 3305 . . . . . . . . . . . . 13  |-  ( ( x  -  1 )  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3017, 29syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) ) )
3130imp 445 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  -> 
( A  <_  (
x  -  1 )  ->  x  <_  (
x  -  1 ) ) )
3231adantlr 751 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( A  <_  ( x  - 
1 )  ->  x  <_  ( x  -  1 ) ) )
3325, 32sylbird 250 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  ( -.  ( x  -  1 )  <  A  ->  x  <_  ( x  - 
1 ) ) )
3421, 33mt3d 140 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  A  e.  RR )  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  ->  (
x  -  1 )  <  A )
3534ex 450 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  ->  ( x  -  1 )  < 
A ) )
3615, 35impbid 202 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) ) )
37 1re 10039 . . . . . . . 8  |-  1  e.  RR
38 ltsubadd 10498 . . . . . . . 8  |-  ( ( x  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( x  -  1 )  <  A  <->  x  <  ( A  +  1 ) ) )
3937, 38mp3an2 1412 . . . . . . 7  |-  ( ( x  e.  RR  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
403, 39sylan 488 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( ( x  - 
1 )  <  A  <->  x  <  ( A  + 
1 ) ) )
4136, 40bitr3d 270 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  e.  RR )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4241ancoms 469 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y )  <->  x  <  ( A  +  1 ) ) )
4342anbi2d 740 . . 3  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_ 
y  ->  x  <_  y ) )  <->  ( A  <_  x  /\  x  < 
( A  +  1 ) ) ) )
4443reubidva 3125 . 2  |-  ( A  e.  RR  ->  ( E! x  e.  ZZ  ( A  <_  x  /\  A. y  e.  ZZ  ( A  <_  y  ->  x  <_  y ) )  <->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) ) )
451, 44mpbid 222 1  |-  ( A  e.  RR  ->  E! x  e.  ZZ  ( A  <_  x  /\  x  <  ( A  +  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   class class class wbr 4653  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   ZZcz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  rebtwnz  11787  qbtwnre  12030  dfceil2  12640
  Copyright terms: Public domain W3C validator