Proof of Theorem repswcshw
| Step | Hyp | Ref
| Expression |
| 1 | | 0csh0 13539 |
. . . . 5
 cyclShift   |
| 2 | | repsw0 13524 |
. . . . . 6
  repeatS    |
| 3 | 2 | oveq1d 6665 |
. . . . 5
   repeatS
 cyclShift   cyclShift    |
| 4 | 1, 3, 2 | 3eqtr4a 2682 |
. . . 4
   repeatS
 cyclShift   repeatS    |
| 5 | 4 | 3ad2ant1 1082 |
. . 3
 
   repeatS
 cyclShift   repeatS    |
| 6 | | oveq2 6658 |
. . . . 5
  repeatS   repeatS    |
| 7 | 6 | oveq1d 6665 |
. . . 4
   repeatS
 cyclShift    repeatS  cyclShift    |
| 8 | 7, 6 | eqeq12d 2637 |
. . 3
    repeatS  cyclShift   repeatS 
  repeatS  cyclShift
  repeatS     |
| 9 | 5, 8 | syl5ibr 236 |
. 2
  
   repeatS 
cyclShift   repeatS
    |
| 10 | | idd 24 |
. . . 4
     |
| 11 | | df-ne 2795 |
. . . . 5

  |
| 12 | | elnnne0 11306 |
. . . . . 6

    |
| 13 | 12 | simplbi2com 657 |
. . . . 5
 
   |
| 14 | 11, 13 | sylbir 225 |
. . . 4
     |
| 15 | | idd 24 |
. . . 4
     |
| 16 | 10, 14, 15 | 3anim123d 1406 |
. . 3
  

     |
| 17 | | nnnn0 11299 |
. . . . . . 7
   |
| 18 | 17 | anim2i 593 |
. . . . . 6
 
 
   |
| 19 | | repsw 13522 |
. . . . . 6
 
  repeatS
 Word   |
| 20 | 18, 19 | syl 17 |
. . . . 5
 
  repeatS
 Word   |
| 21 | | cshword 13537 |
. . . . 5
   repeatS
 Word    repeatS
 cyclShift     repeatS
 substr       repeatS         repeatS     ++   repeatS 
substr        repeatS         |
| 22 | 20, 21 | stoic3 1701 |
. . . 4
 
   repeatS
 cyclShift     repeatS
 substr       repeatS         repeatS     ++   repeatS 
substr        repeatS         |
| 23 | | repswlen 13523 |
. . . . . . . . . 10
 
     repeatS     |
| 24 | 18, 23 | syl 17 |
. . . . . . . . 9
 
     repeatS     |
| 25 | 24 | oveq2d 6666 |
. . . . . . . 8
 
      repeatS        |
| 26 | 25, 24 | opeq12d 4410 |
. . . . . . 7
 
       repeatS         repeatS           |
| 27 | 26 | oveq2d 6666 |
. . . . . 6
 
   repeatS  substr       repeatS         repeatS       repeatS  substr  
      |
| 28 | 25 | opeq2d 4409 |
. . . . . . 7
 
        repeatS
     
     |
| 29 | 28 | oveq2d 6666 |
. . . . . 6
 
   repeatS  substr        repeatS
       repeatS 
substr         |
| 30 | 27, 29 | oveq12d 6668 |
. . . . 5
 
    repeatS 
substr       repeatS         repeatS     ++   repeatS 
substr        repeatS          repeatS  substr       ++   repeatS  substr          |
| 31 | 30 | 3adant3 1081 |
. . . 4
 
    repeatS  substr       repeatS         repeatS     ++   repeatS 
substr        repeatS          repeatS  substr       ++   repeatS  substr          |
| 32 | 18 | 3adant3 1081 |
. . . . . . 7
 
 
   |
| 33 | | zmodcl 12690 |
. . . . . . . . . 10
 
     |
| 34 | 33 | ancoms 469 |
. . . . . . . . 9
 
     |
| 35 | 17 | adantr 481 |
. . . . . . . . 9
 
   |
| 36 | 34, 35 | jca 554 |
. . . . . . . 8
 
   
   |
| 37 | 36 | 3adant1 1079 |
. . . . . . 7
 
   
   |
| 38 | | nnre 11027 |
. . . . . . . . 9
   |
| 39 | 38 | leidd 10594 |
. . . . . . . 8
   |
| 40 | 39 | 3ad2ant2 1083 |
. . . . . . 7
 
   |
| 41 | | repswswrd 13531 |
. . . . . . 7
  
   
    repeatS
 substr        repeatS 
      |
| 42 | 32, 37, 40, 41 | syl3anc 1326 |
. . . . . 6
 
   repeatS
 substr        repeatS 
      |
| 43 | | 0nn0 11307 |
. . . . . . . . 9
 |
| 44 | 34, 43 | jctil 560 |
. . . . . . . 8
 
       |
| 45 | 44 | 3adant1 1079 |
. . . . . . 7
 
  
    |
| 46 | | zre 11381 |
. . . . . . . . . 10
   |
| 47 | | nnrp 11842 |
. . . . . . . . . 10
   |
| 48 | | modcl 12672 |
. . . . . . . . . 10
 
     |
| 49 | 46, 47, 48 | syl2anr 495 |
. . . . . . . . 9
 
     |
| 50 | 38 | adantr 481 |
. . . . . . . . 9
 
   |
| 51 | | modlt 12679 |
. . . . . . . . . 10
 
  
  |
| 52 | 46, 47, 51 | syl2anr 495 |
. . . . . . . . 9
 
  
  |
| 53 | 49, 50, 52 | ltled 10185 |
. . . . . . . 8
 
  
  |
| 54 | 53 | 3adant1 1079 |
. . . . . . 7
 
 
   |
| 55 | | repswswrd 13531 |
. . . . . . 7
  
 
    
   repeatS  substr      
 repeatS        |
| 56 | 32, 45, 54, 55 | syl3anc 1326 |
. . . . . 6
 
   repeatS
 substr        repeatS        |
| 57 | 42, 56 | oveq12d 6668 |
. . . . 5
 
    repeatS  substr       ++   repeatS  substr          repeatS
     ++  repeatS         |
| 58 | | simp1 1061 |
. . . . . 6
 
   |
| 59 | 33 | nn0red 11352 |
. . . . . . . . . 10
 
     |
| 60 | 59 | ancoms 469 |
. . . . . . . . 9
 
     |
| 61 | 60, 50, 52 | ltled 10185 |
. . . . . . . 8
 
  
  |
| 62 | 61 | 3adant1 1079 |
. . . . . . 7
 
 
   |
| 63 | 34 | 3adant1 1079 |
. . . . . . . 8
 
 
   |
| 64 | 17 | 3ad2ant2 1083 |
. . . . . . . 8
 
   |
| 65 | | nn0sub 11343 |
. . . . . . . 8
   
   
       |
| 66 | 63, 64, 65 | syl2anc 693 |
. . . . . . 7
 
   
       |
| 67 | 62, 66 | mpbid 222 |
. . . . . 6
 
 
     |
| 68 | 33 | nn0ge0d 11354 |
. . . . . . . . 9
 

    |
| 69 | 68 | ancoms 469 |
. . . . . . . 8
 

    |
| 70 | 69 | 3adant1 1079 |
. . . . . . 7
 
     |
| 71 | 63, 43 | jctil 560 |
. . . . . . . 8
 
  
    |
| 72 | | nn0sub 11343 |
. . . . . . . 8
  
   
        |
| 73 | 71, 72 | syl 17 |
. . . . . . 7
 
 
 
 
     |
| 74 | 70, 73 | mpbid 222 |
. . . . . 6
 
       |
| 75 | | repswccat 13532 |
. . . . . 6
  

         repeatS 
    ++  repeatS
 
     repeatS   
          |
| 76 | 58, 67, 74, 75 | syl3anc 1326 |
. . . . 5
 
   repeatS
     ++  repeatS        repeatS   
          |
| 77 | | nncn 11028 |
. . . . . . . . . . 11
   |
| 78 | 77 | adantl 482 |
. . . . . . . . . 10
 
   |
| 79 | 33 | nn0cnd 11353 |
. . . . . . . . . 10
 
     |
| 80 | | 0cnd 10033 |
. . . . . . . . . 10
 
   |
| 81 | 78, 79, 80 | npncand 10416 |
. . . . . . . . 9
 
   
           |
| 82 | 77 | subid1d 10381 |
. . . . . . . . . 10
 
   |
| 83 | 82 | adantl 482 |
. . . . . . . . 9
 
     |
| 84 | 81, 83 | eqtrd 2656 |
. . . . . . . 8
 
   
         |
| 85 | 84 | ancoms 469 |
. . . . . . 7
 
   
         |
| 86 | 85 | 3adant1 1079 |
. . . . . 6
 
   
         |
| 87 | 86 | oveq2d 6666 |
. . . . 5
 
  repeatS   
         repeatS    |
| 88 | 57, 76, 87 | 3eqtrd 2660 |
. . . 4
 
    repeatS  substr       ++   repeatS  substr         repeatS    |
| 89 | 22, 31, 88 | 3eqtrd 2660 |
. . 3
 
   repeatS
 cyclShift   repeatS    |
| 90 | 16, 89 | syl6 35 |
. 2
  

  repeatS  cyclShift
  repeatS     |
| 91 | 9, 90 | pm2.61i 176 |
1
 
   repeatS
 cyclShift   repeatS    |