MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswcshw Structured version   Visualization version   Unicode version

Theorem repswcshw 13558
Description: A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.)
Assertion
Ref Expression
repswcshw  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) cyclShift  I )  =  ( S repeatS  N ) )

Proof of Theorem repswcshw
StepHypRef Expression
1 0csh0 13539 . . . . 5  |-  ( (/) cyclShift  I )  =  (/)
2 repsw0 13524 . . . . . 6  |-  ( S  e.  V  ->  ( S repeatS  0 )  =  (/) )
32oveq1d 6665 . . . . 5  |-  ( S  e.  V  ->  (
( S repeatS  0 ) cyclShift  I )  =  (
(/) cyclShift  I ) )
41, 3, 23eqtr4a 2682 . . . 4  |-  ( S  e.  V  ->  (
( S repeatS  0 ) cyclShift  I )  =  ( S repeatS  0 ) )
543ad2ant1 1082 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  I  e.  ZZ )  ->  (
( S repeatS  0 ) cyclShift  I )  =  ( S repeatS  0 ) )
6 oveq2 6658 . . . . 5  |-  ( N  =  0  ->  ( S repeatS  N )  =  ( S repeatS  0 ) )
76oveq1d 6665 . . . 4  |-  ( N  =  0  ->  (
( S repeatS  N ) cyclShift  I )  =  ( ( S repeatS  0 ) cyclShift  I
) )
87, 6eqeq12d 2637 . . 3  |-  ( N  =  0  ->  (
( ( S repeatS  N
) cyclShift  I )  =  ( S repeatS  N )  <->  ( ( S repeatS  0 ) cyclShift  I )  =  ( S repeatS  0
) ) )
95, 8syl5ibr 236 . 2  |-  ( N  =  0  ->  (
( S  e.  V  /\  N  e.  NN0  /\  I  e.  ZZ )  ->  ( ( S repeatS  N ) cyclShift  I )  =  ( S repeatS  N )
) )
10 idd 24 . . . 4  |-  ( -.  N  =  0  -> 
( S  e.  V  ->  S  e.  V ) )
11 df-ne 2795 . . . . 5  |-  ( N  =/=  0  <->  -.  N  =  0 )
12 elnnne0 11306 . . . . . 6  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  N  =/=  0 ) )
1312simplbi2com 657 . . . . 5  |-  ( N  =/=  0  ->  ( N  e.  NN0  ->  N  e.  NN ) )
1411, 13sylbir 225 . . . 4  |-  ( -.  N  =  0  -> 
( N  e.  NN0  ->  N  e.  NN ) )
15 idd 24 . . . 4  |-  ( -.  N  =  0  -> 
( I  e.  ZZ  ->  I  e.  ZZ ) )
1610, 14, 153anim123d 1406 . . 3  |-  ( -.  N  =  0  -> 
( ( S  e.  V  /\  N  e. 
NN0  /\  I  e.  ZZ )  ->  ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ ) ) )
17 nnnn0 11299 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
1817anim2i 593 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( S  e.  V  /\  N  e.  NN0 ) )
19 repsw 13522 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  e. Word  V )
2018, 19syl 17 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( S repeatS  N )  e. Word  V )
21 cshword 13537 . . . . 5  |-  ( ( ( S repeatS  N )  e. Word  V  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) cyclShift  I )  =  ( ( ( S repeatS  N ) substr  <.
( I  mod  ( # `
 ( S repeatS  N
) ) ) ,  ( # `  ( S repeatS  N ) ) >.
) ++  ( ( S repeatS  N ) substr  <. 0 ,  ( I  mod  ( # `
 ( S repeatS  N
) ) ) >.
) ) )
2220, 21stoic3 1701 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) cyclShift  I )  =  ( ( ( S repeatS  N ) substr  <.
( I  mod  ( # `
 ( S repeatS  N
) ) ) ,  ( # `  ( S repeatS  N ) ) >.
) ++  ( ( S repeatS  N ) substr  <. 0 ,  ( I  mod  ( # `
 ( S repeatS  N
) ) ) >.
) ) )
23 repswlen 13523 . . . . . . . . . 10  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( # `  ( S repeatS  N ) )  =  N )
2418, 23syl 17 . . . . . . . . 9  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( # `  ( S repeatS  N ) )  =  N )
2524oveq2d 6666 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( I  mod  ( # `
 ( S repeatS  N
) ) )  =  ( I  mod  N
) )
2625, 24opeq12d 4410 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN )  -> 
<. ( I  mod  ( # `
 ( S repeatS  N
) ) ) ,  ( # `  ( S repeatS  N ) ) >.  =  <. ( I  mod  N ) ,  N >. )
2726oveq2d 6666 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( ( S repeatS  N
) substr  <. ( I  mod  ( # `  ( S repeatS  N ) ) ) ,  ( # `  ( S repeatS  N ) ) >.
)  =  ( ( S repeatS  N ) substr  <. (
I  mod  N ) ,  N >. ) )
2825opeq2d 4409 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN )  -> 
<. 0 ,  ( I  mod  ( # `  ( S repeatS  N )
) ) >.  =  <. 0 ,  ( I  mod  N ) >. )
2928oveq2d 6666 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( ( S repeatS  N
) substr  <. 0 ,  ( I  mod  ( # `  ( S repeatS  N )
) ) >. )  =  ( ( S repeatS  N ) substr  <. 0 ,  ( I  mod  N
) >. ) )
3027, 29oveq12d 6668 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( ( ( S repeatS  N ) substr  <. ( I  mod  ( # `  ( S repeatS  N ) ) ) ,  ( # `  ( S repeatS  N ) ) >.
) ++  ( ( S repeatS  N ) substr  <. 0 ,  ( I  mod  ( # `
 ( S repeatS  N
) ) ) >.
) )  =  ( ( ( S repeatS  N
) substr  <. ( I  mod  N ) ,  N >. ) ++  ( ( S repeatS  N
) substr  <. 0 ,  ( I  mod  N )
>. ) ) )
31303adant3 1081 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( ( S repeatS  N
) substr  <. ( I  mod  ( # `  ( S repeatS  N ) ) ) ,  ( # `  ( S repeatS  N ) ) >.
) ++  ( ( S repeatS  N ) substr  <. 0 ,  ( I  mod  ( # `
 ( S repeatS  N
) ) ) >.
) )  =  ( ( ( S repeatS  N
) substr  <. ( I  mod  N ) ,  N >. ) ++  ( ( S repeatS  N
) substr  <. 0 ,  ( I  mod  N )
>. ) ) )
32183adant3 1081 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  ( S  e.  V  /\  N  e.  NN0 ) )
33 zmodcl 12690 . . . . . . . . . 10  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  ( I  mod  N
)  e.  NN0 )
3433ancoms 469 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( I  mod  N
)  e.  NN0 )
3517adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  N  e.  NN0 )
3634, 35jca 554 . . . . . . . 8  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( ( I  mod  N )  e.  NN0  /\  N  e.  NN0 ) )
37363adant1 1079 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( I  mod  N
)  e.  NN0  /\  N  e.  NN0 ) )
38 nnre 11027 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
3938leidd 10594 . . . . . . . 8  |-  ( N  e.  NN  ->  N  <_  N )
40393ad2ant2 1083 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  N  <_  N )
41 repswswrd 13531 . . . . . . 7  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( ( I  mod  N )  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  N )  ->  (
( S repeatS  N ) substr  <.
( I  mod  N
) ,  N >. )  =  ( S repeatS  ( N  -  ( I  mod  N ) ) ) )
4232, 37, 40, 41syl3anc 1326 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) substr  <.
( I  mod  N
) ,  N >. )  =  ( S repeatS  ( N  -  ( I  mod  N ) ) ) )
43 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
4434, 43jctil 560 . . . . . . . 8  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( 0  e.  NN0  /\  ( I  mod  N
)  e.  NN0 )
)
45443adant1 1079 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
0  e.  NN0  /\  ( I  mod  N )  e.  NN0 ) )
46 zre 11381 . . . . . . . . . 10  |-  ( I  e.  ZZ  ->  I  e.  RR )
47 nnrp 11842 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
48 modcl 12672 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  N  e.  RR+ )  -> 
( I  mod  N
)  e.  RR )
4946, 47, 48syl2anr 495 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( I  mod  N
)  e.  RR )
5038adantr 481 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  N  e.  RR )
51 modlt 12679 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  N  e.  RR+ )  -> 
( I  mod  N
)  <  N )
5246, 47, 51syl2anr 495 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( I  mod  N
)  <  N )
5349, 50, 52ltled 10185 . . . . . . . 8  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( I  mod  N
)  <_  N )
54533adant1 1079 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
I  mod  N )  <_  N )
55 repswswrd 13531 . . . . . . 7  |-  ( ( ( S  e.  V  /\  N  e.  NN0 )  /\  ( 0  e. 
NN0  /\  ( I  mod  N )  e.  NN0 )  /\  ( I  mod  N )  <_  N )  ->  ( ( S repeatS  N
) substr  <. 0 ,  ( I  mod  N )
>. )  =  ( S repeatS  ( ( I  mod  N )  -  0 ) ) )
5632, 45, 54, 55syl3anc 1326 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) substr  <.
0 ,  ( I  mod  N ) >.
)  =  ( S repeatS 
( ( I  mod  N )  -  0 ) ) )
5742, 56oveq12d 6668 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( ( S repeatS  N
) substr  <. ( I  mod  N ) ,  N >. ) ++  ( ( S repeatS  N
) substr  <. 0 ,  ( I  mod  N )
>. ) )  =  ( ( S repeatS  ( N  -  ( I  mod  N ) ) ) ++  ( S repeatS  ( ( I  mod  N )  - 
0 ) ) ) )
58 simp1 1061 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  S  e.  V )
5933nn0red 11352 . . . . . . . . . 10  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  ( I  mod  N
)  e.  RR )
6059ancoms 469 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( I  mod  N
)  e.  RR )
6160, 50, 52ltled 10185 . . . . . . . 8  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( I  mod  N
)  <_  N )
62613adant1 1079 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
I  mod  N )  <_  N )
63343adant1 1079 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
I  mod  N )  e.  NN0 )
64173ad2ant2 1083 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  N  e.  NN0 )
65 nn0sub 11343 . . . . . . . 8  |-  ( ( ( I  mod  N
)  e.  NN0  /\  N  e.  NN0 )  -> 
( ( I  mod  N )  <_  N  <->  ( N  -  ( I  mod  N ) )  e.  NN0 ) )
6663, 64, 65syl2anc 693 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( I  mod  N
)  <_  N  <->  ( N  -  ( I  mod  N ) )  e.  NN0 ) )
6762, 66mpbid 222 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  ( N  -  ( I  mod  N ) )  e. 
NN0 )
6833nn0ge0d 11354 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  0  <_  ( I  mod  N ) )
6968ancoms 469 . . . . . . . 8  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  0  <_  ( I  mod  N ) )
70693adant1 1079 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  0  <_  ( I  mod  N
) )
7163, 43jctil 560 . . . . . . . 8  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
0  e.  NN0  /\  ( I  mod  N )  e.  NN0 ) )
72 nn0sub 11343 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  ( I  mod  N )  e.  NN0 )  -> 
( 0  <_  (
I  mod  N )  <->  ( ( I  mod  N
)  -  0 )  e.  NN0 ) )
7371, 72syl 17 . . . . . . 7  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
0  <_  ( I  mod  N )  <->  ( (
I  mod  N )  -  0 )  e. 
NN0 ) )
7470, 73mpbid 222 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( I  mod  N
)  -  0 )  e.  NN0 )
75 repswccat 13532 . . . . . 6  |-  ( ( S  e.  V  /\  ( N  -  (
I  mod  N )
)  e.  NN0  /\  ( ( I  mod  N )  -  0 )  e.  NN0 )  -> 
( ( S repeatS  ( N  -  ( I  mod  N ) ) ) ++  ( S repeatS  ( (
I  mod  N )  -  0 ) ) )  =  ( S repeatS 
( ( N  -  ( I  mod  N ) )  +  ( ( I  mod  N )  -  0 ) ) ) )
7658, 67, 74, 75syl3anc 1326 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( S repeatS  ( N  -  ( I  mod  N ) ) ) ++  ( S repeatS  ( ( I  mod  N )  - 
0 ) ) )  =  ( S repeatS  (
( N  -  (
I  mod  N )
)  +  ( ( I  mod  N )  -  0 ) ) ) )
77 nncn 11028 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
7877adantl 482 . . . . . . . . . 10  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
7933nn0cnd 11353 . . . . . . . . . 10  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  ( I  mod  N
)  e.  CC )
80 0cnd 10033 . . . . . . . . . 10  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  0  e.  CC )
8178, 79, 80npncand 10416 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  -  ( I  mod  N ) )  +  ( ( I  mod  N )  -  0 ) )  =  ( N  - 
0 ) )
8277subid1d 10381 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  -  0 )  =  N )
8382adantl 482 . . . . . . . . 9  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  0 )  =  N )
8481, 83eqtrd 2656 . . . . . . . 8  |-  ( ( I  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  -  ( I  mod  N ) )  +  ( ( I  mod  N )  -  0 ) )  =  N )
8584ancoms 469 . . . . . . 7  |-  ( ( N  e.  NN  /\  I  e.  ZZ )  ->  ( ( N  -  ( I  mod  N ) )  +  ( ( I  mod  N )  -  0 ) )  =  N )
86853adant1 1079 . . . . . 6  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( N  -  (
I  mod  N )
)  +  ( ( I  mod  N )  -  0 ) )  =  N )
8786oveq2d 6666 . . . . 5  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  ( S repeatS  ( ( N  -  ( I  mod  N ) )  +  ( ( I  mod  N )  -  0 ) ) )  =  ( S repeatS  N ) )
8857, 76, 873eqtrd 2660 . . . 4  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( ( S repeatS  N
) substr  <. ( I  mod  N ) ,  N >. ) ++  ( ( S repeatS  N
) substr  <. 0 ,  ( I  mod  N )
>. ) )  =  ( S repeatS  N ) )
8922, 31, 883eqtrd 2660 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) cyclShift  I )  =  ( S repeatS  N ) )
9016, 89syl6 35 . 2  |-  ( -.  N  =  0  -> 
( ( S  e.  V  /\  N  e. 
NN0  /\  I  e.  ZZ )  ->  ( ( S repeatS  N ) cyclShift  I )  =  ( S repeatS  N
) ) )
919, 90pm2.61i 176 1  |-  ( ( S  e.  V  /\  N  e.  NN0  /\  I  e.  ZZ )  ->  (
( S repeatS  N ) cyclShift  I )  =  ( S repeatS  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   RR+crp 11832    mod cmo 12668   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   repeatS creps 13298   cyclShift ccsh 13534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-reps 13306  df-csh 13535
This theorem is referenced by:  cshwrepswhash1  15809
  Copyright terms: Public domain W3C validator