Proof of Theorem repswcshw
Step | Hyp | Ref
| Expression |
1 | | 0csh0 13539 |
. . . . 5
 cyclShift   |
2 | | repsw0 13524 |
. . . . . 6
  repeatS    |
3 | 2 | oveq1d 6665 |
. . . . 5
   repeatS
 cyclShift   cyclShift    |
4 | 1, 3, 2 | 3eqtr4a 2682 |
. . . 4
   repeatS
 cyclShift   repeatS    |
5 | 4 | 3ad2ant1 1082 |
. . 3
 
   repeatS
 cyclShift   repeatS    |
6 | | oveq2 6658 |
. . . . 5
  repeatS   repeatS    |
7 | 6 | oveq1d 6665 |
. . . 4
   repeatS
 cyclShift    repeatS  cyclShift    |
8 | 7, 6 | eqeq12d 2637 |
. . 3
    repeatS  cyclShift   repeatS 
  repeatS  cyclShift
  repeatS     |
9 | 5, 8 | syl5ibr 236 |
. 2
  
   repeatS 
cyclShift   repeatS
    |
10 | | idd 24 |
. . . 4
     |
11 | | df-ne 2795 |
. . . . 5

  |
12 | | elnnne0 11306 |
. . . . . 6

    |
13 | 12 | simplbi2com 657 |
. . . . 5
 
   |
14 | 11, 13 | sylbir 225 |
. . . 4
     |
15 | | idd 24 |
. . . 4
     |
16 | 10, 14, 15 | 3anim123d 1406 |
. . 3
  

     |
17 | | nnnn0 11299 |
. . . . . . 7
   |
18 | 17 | anim2i 593 |
. . . . . 6
 
 
   |
19 | | repsw 13522 |
. . . . . 6
 
  repeatS
 Word   |
20 | 18, 19 | syl 17 |
. . . . 5
 
  repeatS
 Word   |
21 | | cshword 13537 |
. . . . 5
   repeatS
 Word    repeatS
 cyclShift     repeatS
 substr       repeatS         repeatS     ++   repeatS 
substr        repeatS         |
22 | 20, 21 | stoic3 1701 |
. . . 4
 
   repeatS
 cyclShift     repeatS
 substr       repeatS         repeatS     ++   repeatS 
substr        repeatS         |
23 | | repswlen 13523 |
. . . . . . . . . 10
 
     repeatS     |
24 | 18, 23 | syl 17 |
. . . . . . . . 9
 
     repeatS     |
25 | 24 | oveq2d 6666 |
. . . . . . . 8
 
      repeatS        |
26 | 25, 24 | opeq12d 4410 |
. . . . . . 7
 
       repeatS         repeatS           |
27 | 26 | oveq2d 6666 |
. . . . . 6
 
   repeatS  substr       repeatS         repeatS       repeatS  substr  
      |
28 | 25 | opeq2d 4409 |
. . . . . . 7
 
        repeatS
     
     |
29 | 28 | oveq2d 6666 |
. . . . . 6
 
   repeatS  substr        repeatS
       repeatS 
substr         |
30 | 27, 29 | oveq12d 6668 |
. . . . 5
 
    repeatS 
substr       repeatS         repeatS     ++   repeatS 
substr        repeatS          repeatS  substr       ++   repeatS  substr          |
31 | 30 | 3adant3 1081 |
. . . 4
 
    repeatS  substr       repeatS         repeatS     ++   repeatS 
substr        repeatS          repeatS  substr       ++   repeatS  substr          |
32 | 18 | 3adant3 1081 |
. . . . . . 7
 
 
   |
33 | | zmodcl 12690 |
. . . . . . . . . 10
 
     |
34 | 33 | ancoms 469 |
. . . . . . . . 9
 
     |
35 | 17 | adantr 481 |
. . . . . . . . 9
 
   |
36 | 34, 35 | jca 554 |
. . . . . . . 8
 
   
   |
37 | 36 | 3adant1 1079 |
. . . . . . 7
 
   
   |
38 | | nnre 11027 |
. . . . . . . . 9
   |
39 | 38 | leidd 10594 |
. . . . . . . 8
   |
40 | 39 | 3ad2ant2 1083 |
. . . . . . 7
 
   |
41 | | repswswrd 13531 |
. . . . . . 7
  
   
    repeatS
 substr        repeatS 
      |
42 | 32, 37, 40, 41 | syl3anc 1326 |
. . . . . 6
 
   repeatS
 substr        repeatS 
      |
43 | | 0nn0 11307 |
. . . . . . . . 9
 |
44 | 34, 43 | jctil 560 |
. . . . . . . 8
 
       |
45 | 44 | 3adant1 1079 |
. . . . . . 7
 
  
    |
46 | | zre 11381 |
. . . . . . . . . 10
   |
47 | | nnrp 11842 |
. . . . . . . . . 10
   |
48 | | modcl 12672 |
. . . . . . . . . 10
 
     |
49 | 46, 47, 48 | syl2anr 495 |
. . . . . . . . 9
 
     |
50 | 38 | adantr 481 |
. . . . . . . . 9
 
   |
51 | | modlt 12679 |
. . . . . . . . . 10
 
  
  |
52 | 46, 47, 51 | syl2anr 495 |
. . . . . . . . 9
 
  
  |
53 | 49, 50, 52 | ltled 10185 |
. . . . . . . 8
 
  
  |
54 | 53 | 3adant1 1079 |
. . . . . . 7
 
 
   |
55 | | repswswrd 13531 |
. . . . . . 7
  
 
    
   repeatS  substr      
 repeatS        |
56 | 32, 45, 54, 55 | syl3anc 1326 |
. . . . . 6
 
   repeatS
 substr        repeatS        |
57 | 42, 56 | oveq12d 6668 |
. . . . 5
 
    repeatS  substr       ++   repeatS  substr          repeatS
     ++  repeatS         |
58 | | simp1 1061 |
. . . . . 6
 
   |
59 | 33 | nn0red 11352 |
. . . . . . . . . 10
 
     |
60 | 59 | ancoms 469 |
. . . . . . . . 9
 
     |
61 | 60, 50, 52 | ltled 10185 |
. . . . . . . 8
 
  
  |
62 | 61 | 3adant1 1079 |
. . . . . . 7
 
 
   |
63 | 34 | 3adant1 1079 |
. . . . . . . 8
 
 
   |
64 | 17 | 3ad2ant2 1083 |
. . . . . . . 8
 
   |
65 | | nn0sub 11343 |
. . . . . . . 8
   
   
       |
66 | 63, 64, 65 | syl2anc 693 |
. . . . . . 7
 
   
       |
67 | 62, 66 | mpbid 222 |
. . . . . 6
 
 
     |
68 | 33 | nn0ge0d 11354 |
. . . . . . . . 9
 

    |
69 | 68 | ancoms 469 |
. . . . . . . 8
 

    |
70 | 69 | 3adant1 1079 |
. . . . . . 7
 
     |
71 | 63, 43 | jctil 560 |
. . . . . . . 8
 
  
    |
72 | | nn0sub 11343 |
. . . . . . . 8
  
   
        |
73 | 71, 72 | syl 17 |
. . . . . . 7
 
 
 
 
     |
74 | 70, 73 | mpbid 222 |
. . . . . 6
 
       |
75 | | repswccat 13532 |
. . . . . 6
  

         repeatS 
    ++  repeatS
 
     repeatS   
          |
76 | 58, 67, 74, 75 | syl3anc 1326 |
. . . . 5
 
   repeatS
     ++  repeatS        repeatS   
          |
77 | | nncn 11028 |
. . . . . . . . . . 11
   |
78 | 77 | adantl 482 |
. . . . . . . . . 10
 
   |
79 | 33 | nn0cnd 11353 |
. . . . . . . . . 10
 
     |
80 | | 0cnd 10033 |
. . . . . . . . . 10
 
   |
81 | 78, 79, 80 | npncand 10416 |
. . . . . . . . 9
 
   
           |
82 | 77 | subid1d 10381 |
. . . . . . . . . 10
 
   |
83 | 82 | adantl 482 |
. . . . . . . . 9
 
     |
84 | 81, 83 | eqtrd 2656 |
. . . . . . . 8
 
   
         |
85 | 84 | ancoms 469 |
. . . . . . 7
 
   
         |
86 | 85 | 3adant1 1079 |
. . . . . 6
 
   
         |
87 | 86 | oveq2d 6666 |
. . . . 5
 
  repeatS   
         repeatS    |
88 | 57, 76, 87 | 3eqtrd 2660 |
. . . 4
 
    repeatS  substr       ++   repeatS  substr         repeatS    |
89 | 22, 31, 88 | 3eqtrd 2660 |
. . 3
 
   repeatS
 cyclShift   repeatS    |
90 | 16, 89 | syl6 35 |
. 2
  

  repeatS  cyclShift
  repeatS     |
91 | 9, 90 | pm2.61i 176 |
1
 
   repeatS
 cyclShift   repeatS    |