| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimclim1 | Structured version Visualization version Unicode version | ||
| Description: Forward direction of rlimclim 14277. (Contributed by Mario Carneiro, 16-Sep-2014.) |
| Ref | Expression |
|---|---|
| rlimclim1.1 |
|
| rlimclim1.2 |
|
| rlimclim1.3 |
|
| rlimclim1.4 |
|
| Ref | Expression |
|---|---|
| rlimclim1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6201 |
. . . . . . 7
| |
| 2 | 1 | rgenw 2924 |
. . . . . 6
|
| 3 | 2 | a1i 11 |
. . . . 5
|
| 4 | simpr 477 |
. . . . 5
| |
| 5 | rlimclim1.3 |
. . . . . . . . 9
| |
| 6 | rlimf 14232 |
. . . . . . . . 9
| |
| 7 | 5, 6 | syl 17 |
. . . . . . . 8
|
| 8 | 7 | adantr 481 |
. . . . . . 7
|
| 9 | 8 | feqmptd 6249 |
. . . . . 6
|
| 10 | 5 | adantr 481 |
. . . . . 6
|
| 11 | 9, 10 | eqbrtrrd 4677 |
. . . . 5
|
| 12 | 3, 4, 11 | rlimi 14244 |
. . . 4
|
| 13 | rlimclim1.2 |
. . . . . . . 8
| |
| 14 | 13 | ad2antrr 762 |
. . . . . . 7
|
| 15 | flcl 12596 |
. . . . . . . . . 10
| |
| 16 | 15 | peano2zd 11485 |
. . . . . . . . 9
|
| 17 | 16 | ad2antrl 764 |
. . . . . . . 8
|
| 18 | 17, 14 | ifcld 4131 |
. . . . . . 7
|
| 19 | 14 | zred 11482 |
. . . . . . . 8
|
| 20 | 17 | zred 11482 |
. . . . . . . 8
|
| 21 | max1 12016 |
. . . . . . . 8
| |
| 22 | 19, 20, 21 | syl2anc 693 |
. . . . . . 7
|
| 23 | eluz2 11693 |
. . . . . . 7
| |
| 24 | 14, 18, 22, 23 | syl3anbrc 1246 |
. . . . . 6
|
| 25 | rlimclim1.1 |
. . . . . 6
| |
| 26 | 24, 25 | syl6eleqr 2712 |
. . . . 5
|
| 27 | rlimclim1.4 |
. . . . . . . . 9
| |
| 28 | 27 | ad3antrrr 766 |
. . . . . . . 8
|
| 29 | 25 | uztrn2 11705 |
. . . . . . . . 9
|
| 30 | 26, 29 | sylan 488 |
. . . . . . . 8
|
| 31 | 28, 30 | sseldd 3604 |
. . . . . . 7
|
| 32 | simplrr 801 |
. . . . . . 7
| |
| 33 | simplrl 800 |
. . . . . . . 8
| |
| 34 | 16 | zred 11482 |
. . . . . . . . . 10
|
| 35 | 33, 34 | syl 17 |
. . . . . . . . 9
|
| 36 | 19 | adantr 481 |
. . . . . . . . 9
|
| 37 | 35, 36 | ifcld 4131 |
. . . . . . . 8
|
| 38 | eluzelre 11698 |
. . . . . . . . 9
| |
| 39 | 38 | adantl 482 |
. . . . . . . 8
|
| 40 | fllep1 12602 |
. . . . . . . . . 10
| |
| 41 | 33, 40 | syl 17 |
. . . . . . . . 9
|
| 42 | max2 12018 |
. . . . . . . . . 10
| |
| 43 | 36, 35, 42 | syl2anc 693 |
. . . . . . . . 9
|
| 44 | 33, 35, 37, 41, 43 | letrd 10194 |
. . . . . . . 8
|
| 45 | eluzle 11700 |
. . . . . . . . 9
| |
| 46 | 45 | adantl 482 |
. . . . . . . 8
|
| 47 | 33, 37, 39, 44, 46 | letrd 10194 |
. . . . . . 7
|
| 48 | breq2 4657 |
. . . . . . . . 9
| |
| 49 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 50 | 49 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 51 | 50 | fveq2d 6195 |
. . . . . . . . . 10
|
| 52 | 51 | breq1d 4663 |
. . . . . . . . 9
|
| 53 | 48, 52 | imbi12d 334 |
. . . . . . . 8
|
| 54 | 53 | rspcv 3305 |
. . . . . . 7
|
| 55 | 31, 32, 47, 54 | syl3c 66 |
. . . . . 6
|
| 56 | 55 | ralrimiva 2966 |
. . . . 5
|
| 57 | fveq2 6191 |
. . . . . . 7
| |
| 58 | 57 | raleqdv 3144 |
. . . . . 6
|
| 59 | 58 | rspcev 3309 |
. . . . 5
|
| 60 | 26, 56, 59 | syl2anc 693 |
. . . 4
|
| 61 | 12, 60 | rexlimddv 3035 |
. . 3
|
| 62 | 61 | ralrimiva 2966 |
. 2
|
| 63 | rlimpm 14231 |
. . . 4
| |
| 64 | 5, 63 | syl 17 |
. . 3
|
| 65 | eqidd 2623 |
. . 3
| |
| 66 | rlimcl 14234 |
. . . 4
| |
| 67 | 5, 66 | syl 17 |
. . 3
|
| 68 | 27 | sselda 3603 |
. . . 4
|
| 69 | 7 | ffvelrnda 6359 |
. . . 4
|
| 70 | 68, 69 | syldan 487 |
. . 3
|
| 71 | 25, 13, 64, 65, 67, 70 | clim2c 14236 |
. 2
|
| 72 | 62, 71 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fl 12593 df-clim 14219 df-rlim 14220 |
| This theorem is referenced by: rlimclim 14277 dchrisumlema 25177 |
| Copyright terms: Public domain | W3C validator |