MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem1 Structured version   Visualization version   Unicode version

Theorem rpnnen1lem1 11815
Description: Lemma for rpnnen1 11820. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
rpnnen1lem.2  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
rpnnen1lem.n  |-  NN  e.  _V
rpnnen1lem.q  |-  QQ  e.  _V
Assertion
Ref Expression
rpnnen1lem1  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
Distinct variable groups:    k, F, n, x    T, n
Allowed substitution hints:    T( x, k)

Proof of Theorem rpnnen1lem1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.n . . . 4  |-  NN  e.  _V
21mptex 6486 . . 3  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  e.  _V
3 rpnnen1lem.2 . . . 4  |-  F  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) )
43fvmpt2 6291 . . 3  |-  ( ( x  e.  RR  /\  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e. 
_V )  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
52, 4mpan2 707 . 2  |-  ( x  e.  RR  ->  ( F `  x )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k ) ) )
6 rpnnen1lem.1 . . . . . . 7  |-  T  =  { n  e.  ZZ  |  ( n  / 
k )  <  x }
7 ssrab2 3687 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  /  k )  < 
x }  C_  ZZ
86, 7eqsstri 3635 . . . . . 6  |-  T  C_  ZZ
98a1i 11 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  C_  ZZ )
10 nnre 11027 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  RR )
11 remulcl 10021 . . . . . . . . . . . . 13  |-  ( ( k  e.  RR  /\  x  e.  RR )  ->  ( k  x.  x
)  e.  RR )
1211ancoms 469 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  k  e.  RR )  ->  ( k  x.  x
)  e.  RR )
1310, 12sylan2 491 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( k  x.  x
)  e.  RR )
14 btwnz 11479 . . . . . . . . . . . 12  |-  ( ( k  x.  x )  e.  RR  ->  ( E. n  e.  ZZ  n  <  ( k  x.  x )  /\  E. n  e.  ZZ  (
k  x.  x )  <  n ) )
1514simpld 475 . . . . . . . . . . 11  |-  ( ( k  x.  x )  e.  RR  ->  E. n  e.  ZZ  n  <  (
k  x.  x ) )
1613, 15syl 17 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  n  <  ( k  x.  x ) )
17 zre 11381 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  n  e.  RR )
1817adantl 482 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  n  e.  RR )
19 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  x  e.  RR )
20 nngt0 11049 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  0  <  k )
2110, 20jca 554 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
k  e.  RR  /\  0  <  k ) )
2221ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  e.  RR  /\  0  < 
k ) )
23 ltdivmul 10898 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  (
k  e.  RR  /\  0  <  k ) )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2418, 19, 22, 23syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  <->  n  <  ( k  x.  x ) ) )
2524rexbidva 3049 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( E. n  e.  ZZ  ( n  / 
k )  <  x  <->  E. n  e.  ZZ  n  <  ( k  x.  x
) ) )
2616, 25mpbird 247 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. n  e.  ZZ  ( n  /  k
)  <  x )
27 rabn0 3958 . . . . . . . . 9  |-  ( { n  e.  ZZ  | 
( n  /  k
)  <  x }  =/=  (/)  <->  E. n  e.  ZZ  ( n  /  k
)  <  x )
2826, 27sylibr 224 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
296neeq1i 2858 . . . . . . . 8  |-  ( T  =/=  (/)  <->  { n  e.  ZZ  |  ( n  / 
k )  <  x }  =/=  (/) )
3028, 29sylibr 224 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  T  =/=  (/) )
316rabeq2i 3197 . . . . . . . . . 10  |-  ( n  e.  T  <->  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )
3210ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  k  e.  RR )
3332, 19, 11syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( k  x.  x )  e.  RR )
34 ltle 10126 . . . . . . . . . . . . 13  |-  ( ( n  e.  RR  /\  ( k  x.  x
)  e.  RR )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
3518, 33, 34syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( n  < 
( k  x.  x
)  ->  n  <_  ( k  x.  x ) ) )
3624, 35sylbid 230 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  ZZ )  ->  ( ( n  /  k )  < 
x  ->  n  <_  ( k  x.  x ) ) )
3736impr 649 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  ( n  e.  ZZ  /\  ( n  /  k )  < 
x ) )  ->  n  <_  ( k  x.  x ) )
3831, 37sylan2b 492 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  k  e.  NN )  /\  n  e.  T
)  ->  n  <_  ( k  x.  x ) )
3938ralrimiva 2966 . . . . . . . 8  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  A. n  e.  T  n  <_  ( k  x.  x ) )
40 breq2 4657 . . . . . . . . . 10  |-  ( y  =  ( k  x.  x )  ->  (
n  <_  y  <->  n  <_  ( k  x.  x ) ) )
4140ralbidv 2986 . . . . . . . . 9  |-  ( y  =  ( k  x.  x )  ->  ( A. n  e.  T  n  <_  y  <->  A. n  e.  T  n  <_  ( k  x.  x ) ) )
4241rspcev 3309 . . . . . . . 8  |-  ( ( ( k  x.  x
)  e.  RR  /\  A. n  e.  T  n  <_  ( k  x.  x ) )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
4313, 39, 42syl2anc 693 . . . . . . 7  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  E. y  e.  RR  A. n  e.  T  n  <_  y )
44 suprzcl 11457 . . . . . . 7  |-  ( ( T  C_  ZZ  /\  T  =/=  (/)  /\  E. y  e.  RR  A. n  e.  T  n  <_  y
)  ->  sup ( T ,  RR ,  <  )  e.  T )
459, 30, 43, 44syl3anc 1326 . . . . . 6  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  T )
468, 45sseldi 3601 . . . . 5  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  sup ( T ,  RR ,  <  )  e.  ZZ )
47 znq 11792 . . . . 5  |-  ( ( sup ( T ,  RR ,  <  )  e.  ZZ  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k
)  e.  QQ )
4846, 47sylancom 701 . . . 4  |-  ( ( x  e.  RR  /\  k  e.  NN )  ->  ( sup ( T ,  RR ,  <  )  /  k )  e.  QQ )
49 eqid 2622 . . . 4  |-  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )
5048, 49fmptd 6385 . . 3  |-  ( x  e.  RR  ->  (
k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) : NN --> QQ )
51 rpnnen1lem.q . . . 4  |-  QQ  e.  _V
5251, 1elmap 7886 . . 3  |-  ( ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e.  ( QQ  ^m  NN ) 
<->  ( k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) ) : NN --> QQ )
5350, 52sylibr 224 . 2  |-  ( x  e.  RR  ->  (
k  e.  NN  |->  ( sup ( T ,  RR ,  <  )  / 
k ) )  e.  ( QQ  ^m  NN ) )
545, 53eqeltrd 2701 1  |-  ( x  e.  RR  ->  ( F `  x )  e.  ( QQ  ^m  NN ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   supcsup 8346   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075    / cdiv 10684   NNcn 11020   ZZcz 11377   QQcq 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-q 11789
This theorem is referenced by:  rpnnen1lem3  11816  rpnnen1lem4  11817  rpnnen1lem5  11818  rpnnen1lem6  11819
  Copyright terms: Public domain W3C validator