Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdclem2 Structured version   Visualization version   Unicode version

Theorem sdclem2 33538
Description: Lemma for sdc 33540. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sdc.1  |-  Z  =  ( ZZ>= `  M )
sdc.2  |-  ( g  =  ( f  |`  ( M ... n ) )  ->  ( ps  <->  ch ) )
sdc.3  |-  ( n  =  M  ->  ( ps 
<->  ta ) )
sdc.4  |-  ( n  =  k  ->  ( ps 
<->  th ) )
sdc.5  |-  ( ( g  =  h  /\  n  =  ( k  +  1 ) )  ->  ( ps  <->  si )
)
sdc.6  |-  ( ph  ->  A  e.  V )
sdc.7  |-  ( ph  ->  M  e.  ZZ )
sdc.8  |-  ( ph  ->  E. g ( g : { M } --> A  /\  ta ) )
sdc.9  |-  ( (
ph  /\  k  e.  Z )  ->  (
( g : ( M ... k ) --> A  /\  th )  ->  E. h ( h : ( M ... ( k  +  1 ) ) --> A  /\  g  =  ( h  |`  ( M ... k
) )  /\  si ) ) )
sdc.10  |-  J  =  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }
sdc.11  |-  F  =  ( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
sdc.12  |-  F/ k
ph
sdc.13  |-  ( ph  ->  G : Z --> J )
sdc.14  |-  ( ph  ->  ( G `  M
) : ( M ... M ) --> A )
sdc.15  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  ( w  +  1 ) )  e.  ( w F ( G `  w
) ) )
Assertion
Ref Expression
sdclem2  |-  ( ph  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
Distinct variable groups:    f, g, h, k, n, w, x, A    h, J, k, w, x    f, M, g, h, k, n, w, x    ch, g    n, F, w, x    ps, f, h, k, x    si, f,
g, n, x    f, G, g, h, k, n, w, x    ph, n, w, x    th, n, w, x    h, V    ta, h, k, n, w, x   
f, Z, g, h, k, n, w, x
Allowed substitution hints:    ph( f, g, h, k)    ps( w, g, n)    ch( x, w, f, h, k, n)    th( f, g, h, k)    ta( f, g)    si( w, h, k)    F( f, g, h, k)    J( f, g, n)    V( x, w, f, g, k, n)

Proof of Theorem sdclem2
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 sdc.12 . . 3  |-  F/ k
ph
2 sdc.13 . . . . . . . 8  |-  ( ph  ->  G : Z --> J )
32ffvelrnda 6359 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  J )
4 sdc.10 . . . . . . . . 9  |-  J  =  { g  |  E. n  e.  Z  (
g : ( M ... n ) --> A  /\  ps ) }
54eleq2i 2693 . . . . . . . 8  |-  ( ( G `  k )  e.  J  <->  ( G `  k )  e.  {
g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) } )
6 nfcv 2764 . . . . . . . . . 10  |-  F/_ g Z
7 nfv 1843 . . . . . . . . . . 11  |-  F/ g ( G `  k
) : ( M ... n ) --> A
8 nfsbc1v 3455 . . . . . . . . . . 11  |-  F/ g
[. ( G `  k )  /  g ]. ps
97, 8nfan 1828 . . . . . . . . . 10  |-  F/ g ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )
106, 9nfrex 3007 . . . . . . . . 9  |-  F/ g E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )
11 fvex 6201 . . . . . . . . 9  |-  ( G `
 k )  e. 
_V
12 feq1 6026 . . . . . . . . . . 11  |-  ( g  =  ( G `  k )  ->  (
g : ( M ... n ) --> A  <-> 
( G `  k
) : ( M ... n ) --> A ) )
13 sbceq1a 3446 . . . . . . . . . . 11  |-  ( g  =  ( G `  k )  ->  ( ps 
<-> 
[. ( G `  k )  /  g ]. ps ) )
1412, 13anbi12d 747 . . . . . . . . . 10  |-  ( g  =  ( G `  k )  ->  (
( g : ( M ... n ) --> A  /\  ps )  <->  ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps ) ) )
1514rexbidv 3052 . . . . . . . . 9  |-  ( g  =  ( G `  k )  ->  ( E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps )  <->  E. n  e.  Z  ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps ) ) )
1610, 11, 15elabf 3349 . . . . . . . 8  |-  ( ( G `  k )  e.  { g  |  E. n  e.  Z  ( g : ( M ... n ) --> A  /\  ps ) } 
<->  E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps ) )
175, 16bitri 264 . . . . . . 7  |-  ( ( G `  k )  e.  J  <->  E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k
)  /  g ]. ps ) )
183, 17sylib 208 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k
)  /  g ]. ps ) )
19 fdm 6051 . . . . . . . . . 10  |-  ( ( G `  k ) : ( M ... n ) --> A  ->  dom  ( G `  k
)  =  ( M ... n ) )
2019adantr 481 . . . . . . . . 9  |-  ( ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps )  ->  dom  ( G `  k
)  =  ( M ... n ) )
21 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  M  ->  ( G `  x )  =  ( G `  M ) )
22 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  M  ->  ( M ... x )  =  ( M ... M
) )
2322mpteq1d 4738 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  M  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) )
2421, 23eqeq12d 2637 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  M  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  M
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) ) )
2524imbi2d 330 . . . . . . . . . . . . . . . . 17  |-  ( x  =  M  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  M
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) ) ) )
26 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  ( G `  x )  =  ( G `  w ) )
27 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  ( M ... x )  =  ( M ... w
) )
2827mpteq1d 4738 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) ) )
2926, 28eqeq12d 2637 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) ) ) )
3029imbi2d 330 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) ) ) ) )
31 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( w  + 
1 )  ->  ( G `  x )  =  ( G `  ( w  +  1
) ) )
32 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( w  + 
1 )  ->  ( M ... x )  =  ( M ... (
w  +  1 ) ) )
3332mpteq1d 4738 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( w  + 
1 )  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) )
3431, 33eqeq12d 2637 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( w  + 
1 )  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) )
3534imbi2d 330 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( w  + 
1 )  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) ) )
36 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  ( G `  x )  =  ( G `  k ) )
37 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  k  ->  ( M ... x )  =  ( M ... k
) )
3837mpteq1d 4738 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  k  ->  (
m  e.  ( M ... x )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) )
3936, 38eqeq12d 2637 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  k  ->  (
( G `  x
)  =  ( m  e.  ( M ... x )  |->  ( ( G `  m ) `
 m ) )  <-> 
( G `  k
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) ) )
4039imbi2d 330 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
( ph  ->  ( G `
 x )  =  ( m  e.  ( M ... x ) 
|->  ( ( G `  m ) `  m
) ) )  <->  ( ph  ->  ( G `  k
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) ) ) )
41 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  k  ->  ( G `  m )  =  ( G `  k ) )
42 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  =  k  ->  m  =  k )
4341, 42fveq12d 6197 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  =  k  ->  (
( G `  m
) `  m )  =  ( ( G `
 k ) `  k ) )
44 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) )  =  ( m  e.  ( M ... M
)  |->  ( ( G `
 m ) `  m ) )
45 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( G `  k ) `
 k )  e. 
_V
4643, 44, 45fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( M ... M )  ->  (
( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
)  =  ( ( G `  k ) `
 k ) )
4746adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( (
m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) `  k )  =  ( ( G `
 k ) `  k ) )
48 elfz1eq 12352 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  ( M ... M )  ->  k  =  M )
4948adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  k  =  M )
5049fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( G `  k )  =  ( G `  M ) )
5150fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( ( G `  k ) `  k )  =  ( ( G `  M
) `  k )
)
5247, 51eqtr2d 2657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( M ... M ) )  ->  ( ( G `  M ) `  k )  =  ( ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
) )
5352ex 450 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( k  e.  ( M ... M )  ->  ( ( G `
 M ) `  k )  =  ( ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
) ) )
541, 53ralrimi 2957 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. k  e.  ( M ... M ) ( ( G `  M ) `  k
)  =  ( ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) `  k )
)
55 sdc.14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( G `  M
) : ( M ... M ) --> A )
56 ffn 6045 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G `  M ) : ( M ... M ) --> A  -> 
( G `  M
)  Fn  ( M ... M ) )
5755, 56syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G `  M
)  Fn  ( M ... M ) )
58 fvex 6201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G `  m ) `
 m )  e. 
_V
5958, 44fnmpti 6022 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) )  Fn  ( M ... M )
60 eqfnfv 6311 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( G `  M
)  Fn  ( M ... M )  /\  ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
)  Fn  ( M ... M ) )  ->  ( ( G `
 M )  =  ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) )  <->  A. k  e.  ( M ... M
) ( ( G `
 M ) `  k )  =  ( ( m  e.  ( M ... M ) 
|->  ( ( G `  m ) `  m
) ) `  k
) ) )
6157, 59, 60sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( G `  M )  =  ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
)  <->  A. k  e.  ( M ... M ) ( ( G `  M ) `  k
)  =  ( ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) `  k )
) )
6254, 61mpbird 247 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G `  M
)  =  ( m  e.  ( M ... M )  |->  ( ( G `  m ) `
 m ) ) )
6362a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  ZZ  ->  ( ph  ->  ( G `  M )  =  ( m  e.  ( M ... M )  |->  ( ( G `  m
) `  m )
) ) )
64 sdc.1 . . . . . . . . . . . . . . . . . . . 20  |-  Z  =  ( ZZ>= `  M )
6564eleq2i 2693 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  Z  <->  w  e.  ( ZZ>= `  M )
)
662ffvelrnda 6359 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  w )  e.  J )
67 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  w  e.  Z )  ->  w  e.  Z )
68 3simpa 1058 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )  ->  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) )
6968reximi 3011 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )  ->  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) )
7069ss2abi 3674 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } 
C_  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }
71 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ZZ>= `  M )  e.  _V
7264, 71eqeltri 2697 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  Z  e. 
_V
73 nfv 1843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  F/ k  w  e.  Z
741, 73nfan 1828 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  F/ k ( ph  /\  w  e.  Z )
75 sdc.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  A  e.  V )
7675adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
ph  /\  w  e.  Z )  ->  A  e.  V )
77 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) )  ->  h : ( M ... ( k  +  1 ) ) --> A )
78 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( M ... ( k  +  1 ) )  e. 
_V
79 elmapg 7870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( A  e.  V  /\  ( M ... ( k  +  1 ) )  e.  _V )  -> 
( h  e.  ( A  ^m  ( M ... ( k  +  1 ) ) )  <-> 
h : ( M ... ( k  +  1 ) ) --> A ) )
8078, 79mpan2 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( A  e.  V  ->  (
h  e.  ( A  ^m  ( M ... ( k  +  1 ) ) )  <->  h :
( M ... (
k  +  1 ) ) --> A ) )
8177, 80syl5ibr 236 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( A  e.  V  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) )  ->  h  e.  ( A  ^m  ( M ... ( k  +  1 ) ) ) ) )
8281abssdv 3676 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A  e.  V  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  C_  ( A  ^m  ( M ... ( k  +  1 ) ) ) )
8376, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  C_  ( A  ^m  ( M ... ( k  +  1 ) ) ) )
84 ovex 6678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( A  ^m  ( M ... ( k  +  1 ) ) )  e. 
_V
85 ssexg 4804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( { h  |  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  C_  ( A  ^m  ( M ... (
k  +  1 ) ) )  /\  ( A  ^m  ( M ... ( k  +  1 ) ) )  e. 
_V )  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
8683, 84, 85sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
8786a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
ph  /\  w  e.  Z )  ->  (
k  e.  Z  ->  { h  |  (
h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
)
8874, 87ralrimi 2957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
ph  /\  w  e.  Z )  ->  A. k  e.  Z  { h  |  ( h : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
89 abrexex2g 7144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( Z  e.  _V  /\  A. k  e.  Z  {
h  |  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
9072, 88, 89sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )
91 ssexg 4804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  C_  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  /\  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) }  e.  _V )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V )
9270, 90, 91sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  w  e.  Z )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V )
93 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  =  ( G `  w )  ->  (
x  =  ( h  |`  ( M ... k
) )  <->  ( G `  w )  =  ( h  |`  ( M ... k ) ) ) )
94933anbi2d 1404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  =  ( G `  w )  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )  <->  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )
) )
9594rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  ( G `  w )  ->  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si )  <->  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si )
) )
9695abbidv 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  ( G `  w )  ->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } )
9796eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  ( G `  w )  ->  ( { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  <->  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V )
)
98 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  =  ( G `  w )  ->  (
w F x )  =  ( w F ( G `  w
) ) )
9998, 96eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =  ( G `  w )  ->  (
( w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  <-> 
( w F ( G `  w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) )
10097, 99imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  ( G `  w )  ->  (
( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )  <->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) )
101100imbi2d 330 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  ( G `  w )  ->  (
( w  e.  Z  ->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } ) )  <->  ( w  e.  Z  ->  ( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  ( w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) ) )
102 sdc.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  F  =  ( w  e.  Z ,  x  e.  J  |->  { h  |  E. k  e.  Z  (
h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } )
103102ovmpt4g 6783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( w  e.  Z  /\  x  e.  J  /\  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  e.  _V )  ->  ( w F x )  =  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) } )
1041033com12 1269 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  J  /\  w  e.  Z  /\  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) }  e.  _V )  ->  ( w F x )  =  {
h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k
) )  /\  si ) } )
1051043exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  J  ->  (
w  e.  Z  -> 
( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F x )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  x  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) )
106101, 105vtoclga 3272 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G `  w )  e.  J  ->  (
w  e.  Z  -> 
( { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) }  e.  _V  ->  (
w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } ) ) )
10766, 67, 92, 106syl3c 66 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  w  e.  Z )  ->  (
w F ( G `
 w ) )  =  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) )  /\  si ) } )
108107, 70syl6eqss 3655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  Z )  ->  (
w F ( G `
 w ) ) 
C_  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) } )
109 sdc.15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  ( w  +  1 ) )  e.  ( w F ( G `  w
) ) )
110108, 109sseldd 3604 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  Z )  ->  ( G `  ( w  +  1 ) )  e.  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) } )
111 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G `
 ( w  + 
1 ) )  e. 
_V
112 feq1 6026 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
h : ( M ... ( k  +  1 ) ) --> A  <-> 
( G `  (
w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A ) )
113 reseq1 5390 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
h  |`  ( M ... k ) )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) )
114113eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
( G `  w
)  =  ( h  |`  ( M ... k
) )  <->  ( G `  w )  =  ( ( G `  (
w  +  1 ) )  |`  ( M ... k ) ) ) )
115112, 114anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( h  =  ( G `  ( w  +  1
) )  ->  (
( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) )  <->  ( ( G `
 ( w  + 
1 ) ) : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) ) ) )
116115rexbidv 3052 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( h  =  ( G `  ( w  +  1
) )  ->  ( E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) )  <->  E. k  e.  Z  ( ( G `  ( w  +  1
) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) ) ) )
117111, 116elab 3350 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G `  ( w  +  1 ) )  e.  { h  |  E. k  e.  Z  ( h : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( h  |`  ( M ... k ) ) ) }  <->  E. k  e.  Z  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) ) )
118110, 117sylib 208 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  Z )  ->  E. k  e.  Z  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) ) )
119 nfv 1843 . . . . . . . . . . . . . . . . . . . . . 22  |-  F/ k ( ( G `  w )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
)  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) )
120 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A )
121 fzssp1 12384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( M ... k )  C_  ( M ... ( k  +  1 ) )
122 fssres 6070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( G `  (
w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( M ... k )  C_  ( M ... ( k  +  1 ) ) )  ->  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) : ( M ... k ) --> A )
123120, 121, 122sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) ) : ( M ... k ) --> A )
124 fdm 6051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( G `  (
w  +  1 ) )  |`  ( M ... k ) ) : ( M ... k
) --> A  ->  dom  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( M ... k ) )
125123, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  dom  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( M ... k ) )
126 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )
12758, 126fnmpti 6022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  Fn  ( M ... w )
128 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
) )
129128fneq1d 5981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
( G `  (
w  +  1 ) )  |`  ( M ... k ) )  Fn  ( M ... w
)  <->  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  Fn  ( M ... w
) ) )
130127, 129mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  Fn  ( M ... w ) )
131 fndm 5990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( G `  (
w  +  1 ) )  |`  ( M ... k ) )  Fn  ( M ... w
)  ->  dom  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( M ... w ) )
132130, 131syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  dom  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( M ... w ) )
133125, 132eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( M ... k )  =  ( M ... w ) )
134 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  k  e.  Z )
135134, 64syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  k  e.  ( ZZ>= `  M )
)
136 fzopth 12378 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( M ... k )  =  ( M ... w
)  <->  ( M  =  M  /\  k  =  w ) ) )
137135, 136syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( M ... k )  =  ( M ... w
)  <->  ( M  =  M  /\  k  =  w ) ) )
138133, 137mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( M  =  M  /\  k  =  w ) )
139138simprd 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  k  =  w )
140139oveq1d 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( k  +  1 )  =  ( w  +  1 ) )
141140oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( M ... ( k  +  1 ) )  =  ( M ... ( w  +  1 ) ) )
142 elfzp1 12391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( x  e.  ( M ... (
k  +  1 ) )  <->  ( x  e.  ( M ... k
)  \/  x  =  ( k  +  1 ) ) ) )
143135, 142syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  e.  ( M ... (
k  +  1 ) )  <->  ( x  e.  ( M ... k
)  \/  x  =  ( k  +  1 ) ) ) )
144133reseq2d 5396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  |`  ( M ... k ) )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... w ) ) )
145 fzssp1 12384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( M ... w )  C_  ( M ... ( w  +  1 ) )
146 resmpt 5449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( M ... w ) 
C_  ( M ... ( w  +  1
) )  ->  (
( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) )  |`  ( M ... w ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) )
147145, 146ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  |`  ( M ... w ) )  =  ( m  e.  ( M ... w ) 
|->  ( ( G `  m ) `  m
) )
148144, 147syl6req 2673 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... k ) ) )
149128, 148eqtrd 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) )  |`  ( M ... k ) ) )
150149fveq1d 6193 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
( G `  (
w  +  1 ) )  |`  ( M ... k ) ) `  x )  =  ( ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... k ) ) `  x ) )
151 fvres 6207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  e.  ( M ... k )  ->  (
( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) `
 x )  =  ( ( G `  ( w  +  1
) ) `  x
) )
152 fvres 6207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  e.  ( M ... k )  ->  (
( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  |`  ( M ... k ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 x ) )
153151, 152eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  e.  ( M ... k )  ->  (
( ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) `  x )  =  ( ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  |`  ( M ... k ) ) `  x )  <->  ( ( G `  ( w  +  1 ) ) `
 x )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  x ) ) )
154150, 153syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  e.  ( M ... k
)  ->  ( ( G `  ( w  +  1 ) ) `
 x )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  x ) ) )
155140eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  =  ( k  +  1 )  <->  x  =  ( w  +  1
) ) )
156139, 135eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  w  e.  ( ZZ>= `  M )
)
157 peano2uz 11741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( w  e.  ( ZZ>= `  M
)  ->  ( w  +  1 )  e.  ( ZZ>= `  M )
)
158 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( w  +  1 )  e.  ( ZZ>= `  M
)  ->  ( w  +  1 )  e.  ( M ... (
w  +  1 ) ) )
159 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( m  =  ( w  + 
1 )  ->  ( G `  m )  =  ( G `  ( w  +  1
) ) )
160 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( m  =  ( w  + 
1 )  ->  m  =  ( w  + 
1 ) )
161159, 160fveq12d 6197 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( m  =  ( w  + 
1 )  ->  (
( G `  m
) `  m )  =  ( ( G `
 ( w  + 
1 ) ) `  ( w  +  1
) ) )
162 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )
163 fvex 6201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( G `  ( w  +  1 ) ) `
 ( w  + 
1 ) )  e. 
_V
164161, 162, 163fvmpt 6282 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( w  +  1 )  e.  ( M ... ( w  +  1
) )  ->  (
( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  (
w  +  1 ) )  =  ( ( G `  ( w  +  1 ) ) `
 ( w  + 
1 ) ) )
165156, 157, 158, 1644syl 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) `  ( w  +  1 ) )  =  ( ( G `
 ( w  + 
1 ) ) `  ( w  +  1
) ) )
166165eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) ) `
 ( w  + 
1 ) )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  ( w  +  1
) ) )
167 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( w  + 
1 )  ->  (
( G `  (
w  +  1 ) ) `  x )  =  ( ( G `
 ( w  + 
1 ) ) `  ( w  +  1
) ) )
168 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( w  + 
1 )  ->  (
( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
)  =  ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) `  ( w  +  1 ) ) )
169167, 168eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  =  ( w  + 
1 )  ->  (
( ( G `  ( w  +  1
) ) `  x
)  =  ( ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) `  x )  <->  ( ( G `  (
w  +  1 ) ) `  ( w  +  1 ) )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 ( w  + 
1 ) ) ) )
170166, 169syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  =  ( w  + 
1 )  ->  (
( G `  (
w  +  1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 x ) ) )
171155, 170sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  =  ( k  +  1 )  ->  (
( G `  (
w  +  1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) `
 x ) ) )
172154, 171jaod 395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( (
x  e.  ( M ... k )  \/  x  =  ( k  +  1 ) )  ->  ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) ) )
173143, 172sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( x  e.  ( M ... (
k  +  1 ) )  ->  ( ( G `  ( w  +  1 ) ) `
 x )  =  ( ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) `  x ) ) )
174173ralrimiv 2965 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  A. x  e.  ( M ... (
k  +  1 ) ) ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) )
175 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  -> 
( G `  (
w  +  1 ) )  Fn  ( M ... ( k  +  1 ) ) )
176175ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( G `  ( w  +  1 ) )  Fn  ( M ... ( k  +  1 ) ) )
17758, 162fnmpti 6022 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) )  Fn  ( M ... ( w  +  1
) )
178 eqfnfv2 6312 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( G `  (
w  +  1 ) )  Fn  ( M ... ( k  +  1 ) )  /\  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
)  Fn  ( M ... ( w  + 
1 ) ) )  ->  ( ( G `
 ( w  + 
1 ) )  =  ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) )  <->  ( ( M ... ( k  +  1 ) )  =  ( M ... (
w  +  1 ) )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) ) ) )
179176, 177, 178sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) )  <->  ( ( M ... ( k  +  1 ) )  =  ( M ... (
w  +  1 ) )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( ( G `
 ( w  + 
1 ) ) `  x )  =  ( ( m  e.  ( M ... ( w  +  1 ) ) 
|->  ( ( G `  m ) `  m
) ) `  x
) ) ) )
180141, 174, 179mpbir2and 957 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) ) ) )  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) )
181180expr 643 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A )  ->  (
( ( G `  ( w  +  1
) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  -> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) )
182 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) )  ->  ( ( G `  w )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  <->  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
) ) )
183182imbi1d 331 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) )  ->  ( (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) )  <->  ( (
( G `  (
w  +  1 ) )  |`  ( M ... k ) )  =  ( m  e.  ( M ... w ) 
|->  ( ( G `  m ) `  m
) )  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) ) ) )
184181, 183syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z
)  /\  ( G `  ( w  +  1 ) ) : ( M ... ( k  +  1 ) ) --> A )  ->  (
( G `  w
)  =  ( ( G `  ( w  +  1 ) )  |`  ( M ... k
) )  ->  (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) )
185184expimpd 629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  w  e.  Z )  /\  k  e.  Z )  ->  (
( ( G `  ( w  +  1
) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) )  ->  ( ( G `  w )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  -> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) ) )
186185ex 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  w  e.  Z )  ->  (
k  e.  Z  -> 
( ( ( G `
 ( w  + 
1 ) ) : ( M ... (
k  +  1 ) ) --> A  /\  ( G `  w )  =  ( ( G `
 ( w  + 
1 ) )  |`  ( M ... k ) ) )  ->  (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) ) )
18774, 119, 186rexlimd 3026 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  w  e.  Z )  ->  ( E. k  e.  Z  ( ( G `  ( w  +  1
) ) : ( M ... ( k  +  1 ) ) --> A  /\  ( G `
 w )  =  ( ( G `  ( w  +  1
) )  |`  ( M ... k ) ) )  ->  ( ( G `  w )  =  ( m  e.  ( M ... w
)  |->  ( ( G `
 m ) `  m ) )  -> 
( G `  (
w  +  1 ) )  =  ( m  e.  ( M ... ( w  +  1
) )  |->  ( ( G `  m ) `
 m ) ) ) ) )
188118, 187mpd 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  Z )  ->  (
( G `  w
)  =  ( m  e.  ( M ... w )  |->  ( ( G `  m ) `
 m ) )  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) )
189188expcom 451 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  Z  ->  ( ph  ->  ( ( G `
 w )  =  ( m  e.  ( M ... w ) 
|->  ( ( G `  m ) `  m
) )  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... (
w  +  1 ) )  |->  ( ( G `
 m ) `  m ) ) ) ) )
19065, 189sylbir 225 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( ( G `  w )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
)  ->  ( G `  ( w  +  1 ) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) )
191190a2d 29 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( G `  w )  =  ( m  e.  ( M ... w )  |->  ( ( G `  m
) `  m )
) )  ->  ( ph  ->  ( G `  ( w  +  1
) )  =  ( m  e.  ( M ... ( w  + 
1 ) )  |->  ( ( G `  m
) `  m )
) ) ) )
19225, 30, 35, 40, 63, 191uzind4 11746 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( G `  k
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) ) )
193192, 64eleq2s 2719 . . . . . . . . . . . . . . 15  |-  ( k  e.  Z  ->  ( ph  ->  ( G `  k )  =  ( m  e.  ( M ... k )  |->  ( ( G `  m
) `  m )
) ) )
194193impcom 446 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) ) )
195194dmeqd 5326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  dom  ( G `  k )  =  dom  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) )
196 dmmptg 5632 . . . . . . . . . . . . . 14  |-  ( A. m  e.  ( M ... k ) ( ( G `  m ) `
 m )  e. 
_V  ->  dom  ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  =  ( M ... k
) )
19758a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( M ... k )  ->  (
( G `  m
) `  m )  e.  _V )
198196, 197mprg 2926 . . . . . . . . . . . . 13  |-  dom  (
m  e.  ( M ... k )  |->  ( ( G `  m
) `  m )
)  =  ( M ... k )
199195, 198syl6eq 2672 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  dom  ( G `  k )  =  ( M ... k ) )
200199eqeq1d 2624 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( dom  ( G `  k
)  =  ( M ... n )  <->  ( M ... k )  =  ( M ... n ) ) )
201 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  Z )
202201, 64syl6eleq 2711 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M )
)
203 fzopth 12378 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( M ... k )  =  ( M ... n
)  <->  ( M  =  M  /\  k  =  n ) ) )
204202, 203syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
( M ... k
)  =  ( M ... n )  <->  ( M  =  M  /\  k  =  n ) ) )
205200, 204bitrd 268 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( dom  ( G `  k
)  =  ( M ... n )  <->  ( M  =  M  /\  k  =  n ) ) )
206 simpr 477 . . . . . . . . . 10  |-  ( ( M  =  M  /\  k  =  n )  ->  k  =  n )
207205, 206syl6bi 243 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( dom  ( G `  k
)  =  ( M ... n )  -> 
k  =  n ) )
20820, 207syl5 34 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )  ->  k  =  n ) )
209 oveq2 6658 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( M ... n )  =  ( M ... k
) )
210209feq2d 6031 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( G `  k
) : ( M ... n ) --> A  <-> 
( G `  k
) : ( M ... k ) --> A ) )
211 sdc.4 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( ps 
<->  th ) )
212211sbcbidv 3490 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( [. ( G `  k
)  /  g ]. ps 
<-> 
[. ( G `  k )  /  g ]. th ) )
213210, 212anbi12d 747 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps ) 
<->  ( ( G `  k ) : ( M ... k ) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
214213equcoms 1947 . . . . . . . . 9  |-  ( k  =  n  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps ) 
<->  ( ( G `  k ) : ( M ... k ) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
215214biimpcd 239 . . . . . . . 8  |-  ( ( ( G `  k
) : ( M ... n ) --> A  /\  [. ( G `
 k )  / 
g ]. ps )  -> 
( k  =  n  ->  ( ( G `
 k ) : ( M ... k
) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
216208, 215sylcom 30 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )  ->  ( ( G `
 k ) : ( M ... k
) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
217216rexlimdvw 3034 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( E. n  e.  Z  ( ( G `  k ) : ( M ... n ) --> A  /\  [. ( G `  k )  /  g ]. ps )  ->  ( ( G `
 k ) : ( M ... k
) --> A  /\  [. ( G `  k )  /  g ]. th ) ) )
21818, 217mpd 15 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
) : ( M ... k ) --> A  /\  [. ( G `
 k )  / 
g ]. th ) )
219218simpld 475 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k ) : ( M ... k ) --> A )
220 eluzfz2 12349 . . . . 5  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ( M ... k ) )
221202, 220syl 17 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( M ... k
) )
222219, 221ffvelrnd 6360 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
) `  k )  e.  A )
22343cbvmptv 4750 . . 3  |-  ( m  e.  Z  |->  ( ( G `  m ) `
 m ) )  =  ( k  e.  Z  |->  ( ( G `
 k ) `  k ) )
2241, 222, 223fmptdf 6387 . 2  |-  ( ph  ->  ( m  e.  Z  |->  ( ( G `  m ) `  m
) ) : Z --> A )
225218simprd 479 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  [. ( G `  k )  /  g ]. th )
226194, 225sbceq1dd 3441 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  [. (
m  e.  ( M ... k )  |->  ( ( G `  m
) `  m )
)  /  g ]. th )
227226ex 450 . . . 4  |-  ( ph  ->  ( k  e.  Z  ->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
2281, 227ralrimi 2957 . . 3  |-  ( ph  ->  A. k  e.  Z  [. ( m  e.  ( M ... k ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. th )
229 mpteq1 4737 . . . . . 6  |-  ( ( M ... n )  =  ( M ... k )  ->  (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) ) )
230 dfsbcq 3437 . . . . . 6  |-  ( ( m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  =  ( m  e.  ( M ... k )  |->  ( ( G `  m ) `
 m ) )  ->  ( [. (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  /  g ]. ps 
<-> 
[. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. ps ) )
231209, 229, 2303syl 18 . . . . 5  |-  ( n  =  k  ->  ( [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. ps ) )
232211sbcbidv 3490 . . . . 5  |-  ( n  =  k  ->  ( [. ( m  e.  ( M ... k ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
233231, 232bitrd 268 . . . 4  |-  ( n  =  k  ->  ( [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps  <->  [. ( m  e.  ( M ... k
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. th ) )
234233cbvralv 3171 . . 3  |-  ( A. n  e.  Z  [. (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  /  g ]. ps 
<-> 
A. k  e.  Z  [. ( m  e.  ( M ... k ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. th )
235228, 234sylibr 224 . 2  |-  ( ph  ->  A. n  e.  Z  [. ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )  /  g ]. ps )
23672mptex 6486 . . 3  |-  ( m  e.  Z  |->  ( ( G `  m ) `
 m ) )  e.  _V
237 feq1 6026 . . . 4  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( f : Z --> A 
<->  ( m  e.  Z  |->  ( ( G `  m ) `  m
) ) : Z --> A ) )
238 vex 3203 . . . . . . . 8  |-  f  e. 
_V
239238resex 5443 . . . . . . 7  |-  ( f  |`  ( M ... n
) )  e.  _V
240 sdc.2 . . . . . . 7  |-  ( g  =  ( f  |`  ( M ... n ) )  ->  ( ps  <->  ch ) )
241239, 240sbcie 3470 . . . . . 6  |-  ( [. ( f  |`  ( M ... n ) )  /  g ]. ps  <->  ch )
242 reseq1 5390 . . . . . . . 8  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( f  |`  ( M ... n ) )  =  ( ( m  e.  Z  |->  ( ( G `  m ) `
 m ) )  |`  ( M ... n
) ) )
243 fzssuz 12382 . . . . . . . . . 10  |-  ( M ... n )  C_  ( ZZ>= `  M )
244243, 64sseqtr4i 3638 . . . . . . . . 9  |-  ( M ... n )  C_  Z
245 resmpt 5449 . . . . . . . . 9  |-  ( ( M ... n ) 
C_  Z  ->  (
( m  e.  Z  |->  ( ( G `  m ) `  m
) )  |`  ( M ... n ) )  =  ( m  e.  ( M ... n
)  |->  ( ( G `
 m ) `  m ) ) )
246244, 245ax-mp 5 . . . . . . . 8  |-  ( ( m  e.  Z  |->  ( ( G `  m
) `  m )
)  |`  ( M ... n ) )  =  ( m  e.  ( M ... n ) 
|->  ( ( G `  m ) `  m
) )
247242, 246syl6eq 2672 . . . . . . 7  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( f  |`  ( M ... n ) )  =  ( m  e.  ( M ... n
)  |->  ( ( G `
 m ) `  m ) ) )
248247sbceq1d 3440 . . . . . 6  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( [. ( f  |`  ( M ... n ) )  /  g ]. ps 
<-> 
[. ( m  e.  ( M ... n
)  |->  ( ( G `
 m ) `  m ) )  / 
g ]. ps ) )
249241, 248syl5bbr 274 . . . . 5  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( ch  <->  [. ( m  e.  ( M ... n )  |->  ( ( G `  m ) `
 m ) )  /  g ]. ps ) )
250249ralbidv 2986 . . . 4  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( A. n  e.  Z  ch  <->  A. n  e.  Z  [. ( m  e.  ( M ... n )  |->  ( ( G `  m ) `
 m ) )  /  g ]. ps ) )
251237, 250anbi12d 747 . . 3  |-  ( f  =  ( m  e.  Z  |->  ( ( G `
 m ) `  m ) )  -> 
( ( f : Z --> A  /\  A. n  e.  Z  ch ) 
<->  ( ( m  e.  Z  |->  ( ( G `
 m ) `  m ) ) : Z --> A  /\  A. n  e.  Z  [. (
m  e.  ( M ... n )  |->  ( ( G `  m
) `  m )
)  /  g ]. ps ) ) )
252236, 251spcev 3300 . 2  |-  ( ( ( m  e.  Z  |->  ( ( G `  m ) `  m
) ) : Z --> A  /\  A. n  e.  Z  [. ( m  e.  ( M ... n )  |->  ( ( G `  m ) `
 m ) )  /  g ]. ps )  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
253224, 235, 252syl2anc 693 1  |-  ( ph  ->  E. f ( f : Z --> A  /\  A. n  e.  Z  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200   [.wsbc 3435    C_ wss 3574   {csn 4177    |-> cmpt 4729   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  sdclem1  33539
  Copyright terms: Public domain W3C validator