MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsmstopn Structured version   Visualization version   Unicode version

Theorem setsmstopn 22283
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x  |-  ( ph  ->  X  =  ( Base `  M ) )
setsms.d  |-  ( ph  ->  D  =  ( (
dist `  M )  |`  ( X  X.  X
) ) )
setsms.k  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
setsms.m  |-  ( ph  ->  M  e.  V )
Assertion
Ref Expression
setsmstopn  |-  ( ph  ->  ( MetOpen `  D )  =  ( TopOpen `  K
) )

Proof of Theorem setsmstopn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 setsms.x . . 3  |-  ( ph  ->  X  =  ( Base `  M ) )
2 setsms.d . . 3  |-  ( ph  ->  D  =  ( (
dist `  M )  |`  ( X  X.  X
) ) )
3 setsms.k . . 3  |-  ( ph  ->  K  =  ( M sSet  <. (TopSet `  ndx ) ,  ( MetOpen `  D ) >. ) )
4 setsms.m . . 3  |-  ( ph  ->  M  e.  V )
51, 2, 3, 4setsmstset 22282 . 2  |-  ( ph  ->  ( MetOpen `  D )  =  (TopSet `  K )
)
6 df-mopn 19742 . . . . . . . 8  |-  MetOpen  =  ( x  e.  U. ran  *Met  |->  ( topGen `  ran  ( ball `  x )
) )
76dmmptss 5631 . . . . . . 7  |-  dom  MetOpen  C_  U. ran  *Met
87sseli 3599 . . . . . 6  |-  ( D  e.  dom  MetOpen  ->  D  e.  U. ran  *Met )
9 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  D  e.  U.
ran  *Met )  ->  D  e.  U. ran  *Met )
10 xmetunirn 22142 . . . . . . . . . . 11  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
119, 10sylib 208 . . . . . . . . . 10  |-  ( (
ph  /\  D  e.  U.
ran  *Met )  ->  D  e.  ( *Met `  dom  dom  D
) )
12 eqid 2622 . . . . . . . . . . 11  |-  ( MetOpen `  D )  =  (
MetOpen `  D )
1312mopnuni 22246 . . . . . . . . . 10  |-  ( D  e.  ( *Met ` 
dom  dom  D )  ->  dom  dom  D  =  U. ( MetOpen `  D )
)
1411, 13syl 17 . . . . . . . . 9  |-  ( (
ph  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  =  U. ( MetOpen `  D )
)
152dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  D  =  dom  ( ( dist `  M
)  |`  ( X  X.  X ) ) )
16 dmres 5419 . . . . . . . . . . . . . 14  |-  dom  (
( dist `  M )  |`  ( X  X.  X
) )  =  ( ( X  X.  X
)  i^i  dom  ( dist `  M ) )
1715, 16syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  D  =  ( ( X  X.  X
)  i^i  dom  ( dist `  M ) ) )
18 inss1 3833 . . . . . . . . . . . . 13  |-  ( ( X  X.  X )  i^i  dom  ( dist `  M ) )  C_  ( X  X.  X
)
1917, 18syl6eqss 3655 . . . . . . . . . . . 12  |-  ( ph  ->  dom  D  C_  ( X  X.  X ) )
20 dmss 5323 . . . . . . . . . . . 12  |-  ( dom 
D  C_  ( X  X.  X )  ->  dom  dom 
D  C_  dom  ( X  X.  X ) )
2119, 20syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  dom  D  C_  dom  ( X  X.  X
) )
22 dmxpid 5345 . . . . . . . . . . 11  |-  dom  ( X  X.  X )  =  X
2321, 22syl6sseq 3651 . . . . . . . . . 10  |-  ( ph  ->  dom  dom  D  C_  X
)
2423adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  D  e.  U.
ran  *Met )  ->  dom  dom  D  C_  X
)
2514, 24eqsstr3d 3640 . . . . . . . 8  |-  ( (
ph  /\  D  e.  U.
ran  *Met )  ->  U. ( MetOpen `  D )  C_  X )
26 sspwuni 4611 . . . . . . . 8  |-  ( (
MetOpen `  D )  C_  ~P X  <->  U. ( MetOpen `  D
)  C_  X )
2725, 26sylibr 224 . . . . . . 7  |-  ( (
ph  /\  D  e.  U.
ran  *Met )  -> 
( MetOpen `  D )  C_ 
~P X )
2827ex 450 . . . . . 6  |-  ( ph  ->  ( D  e.  U. ran  *Met  ->  ( MetOpen
`  D )  C_  ~P X ) )
298, 28syl5 34 . . . . 5  |-  ( ph  ->  ( D  e.  dom  MetOpen  ->  ( MetOpen `  D )  C_ 
~P X ) )
30 ndmfv 6218 . . . . . 6  |-  ( -.  D  e.  dom  MetOpen  ->  ( MetOpen
`  D )  =  (/) )
31 0ss 3972 . . . . . 6  |-  (/)  C_  ~P X
3230, 31syl6eqss 3655 . . . . 5  |-  ( -.  D  e.  dom  MetOpen  ->  ( MetOpen
`  D )  C_  ~P X )
3329, 32pm2.61d1 171 . . . 4  |-  ( ph  ->  ( MetOpen `  D )  C_ 
~P X )
341, 2, 3setsmsbas 22280 . . . . 5  |-  ( ph  ->  X  =  ( Base `  K ) )
3534pweqd 4163 . . . 4  |-  ( ph  ->  ~P X  =  ~P ( Base `  K )
)
3633, 5, 353sstr3d 3647 . . 3  |-  ( ph  ->  (TopSet `  K )  C_ 
~P ( Base `  K
) )
37 eqid 2622 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
38 eqid 2622 . . . 4  |-  (TopSet `  K )  =  (TopSet `  K )
3937, 38topnid 16096 . . 3  |-  ( (TopSet `  K )  C_  ~P ( Base `  K )  ->  (TopSet `  K )  =  ( TopOpen `  K
) )
4036, 39syl 17 . 2  |-  ( ph  ->  (TopSet `  K )  =  ( TopOpen `  K
) )
415, 40eqtrd 2656 1  |-  ( ph  ->  ( MetOpen `  D )  =  ( TopOpen `  K
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   <.cop 4183   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   Basecbs 15857  TopSetcts 15947   distcds 15950   TopOpenctopn 16082   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-tset 15960  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by:  setsxms  22284  tmslem  22287
  Copyright terms: Public domain W3C validator