Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0val Structured version   Visualization version   Unicode version

Theorem sge0val 40583
Description: The value of the sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge0val  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  (Σ^ `  F )  =  if ( +oo  e.  ran  F , +oo ,  sup ( ran  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( F `  w
) ) ,  RR* ,  <  ) ) )
Distinct variable groups:    w, F, y    y, X
Allowed substitution hints:    V( y, w)    X( w)

Proof of Theorem sge0val
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-sumge0 40580 . . 3  |- Σ^ 
=  ( x  e. 
_V  |->  if ( +oo  e.  ran  x , +oo ,  sup ( ran  (
y  e.  ( ~P
dom  x  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w
) ) ,  RR* ,  <  ) ) )
21a1i 11 . 2  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  -> Σ^  =  ( x  e.  _V  |->  if ( +oo  e.  ran  x , +oo ,  sup ( ran  ( y  e.  ( ~P dom  x  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w ) ) , 
RR* ,  <  ) ) ) )
3 rneq 5351 . . . . 5  |-  ( x  =  F  ->  ran  x  =  ran  F )
43eleq2d 2687 . . . 4  |-  ( x  =  F  ->  ( +oo  e.  ran  x  <-> +oo  e.  ran  F ) )
54adantl 482 . . 3  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  ( +oo  e.  ran  x  <-> +oo  e.  ran  F ) )
6 dmeq 5324 . . . . . . . . . . . 12  |-  ( x  =  F  ->  dom  x  =  dom  F )
76adantl 482 . . . . . . . . . . 11  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  =  F )  ->  dom  x  =  dom  F )
8 fdm 6051 . . . . . . . . . . . 12  |-  ( F : X --> ( 0 [,] +oo )  ->  dom  F  =  X )
98adantr 481 . . . . . . . . . . 11  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  =  F )  ->  dom  F  =  X )
107, 9eqtrd 2656 . . . . . . . . . 10  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  =  F )  ->  dom  x  =  X )
1110pweqd 4163 . . . . . . . . 9  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  =  F )  ->  ~P dom  x  =  ~P X )
1211ineq1d 3813 . . . . . . . 8  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  =  F )  ->  ( ~P dom  x  i^i  Fin )  =  ( ~P X  i^i  Fin ) )
1312mpteq1d 4738 . . . . . . 7  |-  ( ( F : X --> ( 0 [,] +oo )  /\  x  =  F )  ->  ( y  e.  ( ~P dom  x  i^i 
Fin )  |->  sum_ w  e.  y  ( x `  w ) )  =  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w
) ) )
1413adantll 750 . . . . . 6  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  ( y  e.  ( ~P dom  x  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w ) )  =  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w
) ) )
15 fveq1 6190 . . . . . . . . 9  |-  ( x  =  F  ->  (
x `  w )  =  ( F `  w ) )
1615sumeq2ad 14434 . . . . . . . 8  |-  ( x  =  F  ->  sum_ w  e.  y  ( x `  w )  =  sum_ w  e.  y  ( F `
 w ) )
1716mpteq2dv 4745 . . . . . . 7  |-  ( x  =  F  ->  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( x `  w
) )  =  ( y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) )
1817adantl 482 . . . . . 6  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w
) )  =  ( y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) )
1914, 18eqtrd 2656 . . . . 5  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  ( y  e.  ( ~P dom  x  i^i  Fin )  |->  sum_ w  e.  y  ( x `  w ) )  =  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( F `  w
) ) )
2019rneqd 5353 . . . 4  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  ran  ( y  e.  ( ~P dom  x  i^i  Fin )  |->  sum_
w  e.  y  ( x `  w ) )  =  ran  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) )
2120supeq1d 8352 . . 3  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  sup ( ran  ( y  e.  ( ~P dom  x  i^i 
Fin )  |->  sum_ w  e.  y  ( x `  w ) ) , 
RR* ,  <  )  =  sup ( ran  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) ,  RR* ,  <  ) )
225, 21ifbieq2d 4111 . 2  |-  ( ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  /\  x  =  F )  ->  if ( +oo  e.  ran  x , +oo ,  sup ( ran  ( y  e.  ( ~P dom  x  i^i 
Fin )  |->  sum_ w  e.  y  ( x `  w ) ) , 
RR* ,  <  ) )  =  if ( +oo  e.  ran  F , +oo ,  sup ( ran  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) ,  RR* ,  <  ) ) )
23 simpr 477 . . 3  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  F : X --> ( 0 [,] +oo ) )
24 simpl 473 . . 3  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  X  e.  V
)
25 fex 6490 . . 3  |-  ( ( F : X --> ( 0 [,] +oo )  /\  X  e.  V )  ->  F  e.  _V )
2623, 24, 25syl2anc 693 . 2  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  F  e.  _V )
27 pnfxr 10092 . . . 4  |- +oo  e.  RR*
2827a1i 11 . . 3  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  -> +oo  e.  RR* )
29 xrltso 11974 . . . . 5  |-  <  Or  RR*
3029supex 8369 . . . 4  |-  sup ( ran  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( F `  w
) ) ,  RR* ,  <  )  e.  _V
3130a1i 11 . . 3  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  sup ( ran  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) ,  RR* ,  <  )  e.  _V )
32 ifexg 4157 . . 3  |-  ( ( +oo  e.  RR*  /\  sup ( ran  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( F `  w
) ) ,  RR* ,  <  )  e.  _V )  ->  if ( +oo  e.  ran  F , +oo ,  sup ( ran  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) ,  RR* ,  <  ) )  e. 
_V )
3328, 31, 32syl2anc 693 . 2  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  if ( +oo  e.  ran  F , +oo ,  sup ( ran  (
y  e.  ( ~P X  i^i  Fin )  |-> 
sum_ w  e.  y 
( F `  w
) ) ,  RR* ,  <  ) )  e. 
_V )
342, 22, 26, 33fvmptd 6288 1  |-  ( ( X  e.  V  /\  F : X --> ( 0 [,] +oo ) )  ->  (Σ^ `  F )  =  if ( +oo  e.  ran  F , +oo ,  sup ( ran  ( y  e.  ( ~P X  i^i  Fin )  |->  sum_ w  e.  y  ( F `  w
) ) ,  RR* ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573   ifcif 4086   ~Pcpw 4158    |-> cmpt 4729   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   supcsup 8346   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074   [,]cicc 12178   sum_csu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0vald  40586
  Copyright terms: Public domain W3C validator