MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatwrd Structured version   Visualization version   Unicode version

Theorem swrdccatwrd 13468
Description: Reconstruct a nonempty word from its prefix and last symbol. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
Assertion
Ref Expression
swrdccatwrd  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  W )

Proof of Theorem swrdccatwrd
StepHypRef Expression
1 lennncl 13325 . . . . . 6  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
2 fzo0end 12560 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  ( 0..^ ( # `  W
) ) )
31, 2syl 17 . . . . 5  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )
4 swrds1 13451 . . . . 5  |-  ( ( W  e. Word  V  /\  ( ( # `  W
)  -  1 )  e.  ( 0..^ (
# `  W )
) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( ( ( # `  W
)  -  1 )  +  1 ) >.
)  =  <" ( W `  ( ( # `
 W )  - 
1 ) ) "> )
53, 4syldan 487 . . . 4  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( ( ( # `  W
)  -  1 )  +  1 ) >.
)  =  <" ( W `  ( ( # `
 W )  - 
1 ) ) "> )
6 nncn 11028 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN  ->  ( # `  W
)  e.  CC )
7 1cnd 10056 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN  ->  1  e.  CC )
86, 7npcand 10396 . . . . . . . 8  |-  ( (
# `  W )  e.  NN  ->  ( (
( # `  W )  -  1 )  +  1 )  =  (
# `  W )
)
98eqcomd 2628 . . . . . . 7  |-  ( (
# `  W )  e.  NN  ->  ( # `  W
)  =  ( ( ( # `  W
)  -  1 )  +  1 ) )
101, 9syl 17 . . . . . 6  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( # `
 W )  =  ( ( ( # `  W )  -  1 )  +  1 ) )
1110opeq2d 4409 . . . . 5  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >.  =  <. (
( # `  W )  -  1 ) ,  ( ( ( # `  W )  -  1 )  +  1 )
>. )
1211oveq2d 6666 . . . 4  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  ( W substr  <. (
( # `  W )  -  1 ) ,  ( ( ( # `  W )  -  1 )  +  1 )
>. ) )
13 lsw 13351 . . . . . 6  |-  ( W  e. Word  V  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
1413adantr 481 . . . . 5  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
1514s1eqd 13381 . . . 4  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  <" ( lastS  `  W ) ">  =  <" ( W `
 ( ( # `  W )  -  1 ) ) "> )
165, 12, 153eqtr4rd 2667 . . 3  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  <" ( lastS  `  W ) ">  =  ( W substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. ) )
1716oveq2d 6666 . 2  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  ( W substr  <.
( ( # `  W
)  -  1 ) ,  ( # `  W
) >. ) ) )
18 nnm1nn0 11334 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  NN0 )
19 0elfz 12436 . . . . . 6  |-  ( ( ( # `  W
)  -  1 )  e.  NN0  ->  0  e.  ( 0 ... (
( # `  W )  -  1 ) ) )
2018, 19syl 17 . . . . 5  |-  ( (
# `  W )  e.  NN  ->  0  e.  ( 0 ... (
( # `  W )  -  1 ) ) )
21 1nn0 11308 . . . . . . . 8  |-  1  e.  NN0
2221a1i 11 . . . . . . 7  |-  ( (
# `  W )  e.  NN  ->  1  e.  NN0 )
23 nnnn0 11299 . . . . . . 7  |-  ( (
# `  W )  e.  NN  ->  ( # `  W
)  e.  NN0 )
24 nnge1 11046 . . . . . . 7  |-  ( (
# `  W )  e.  NN  ->  1  <_  (
# `  W )
)
25 elfz2nn0 12431 . . . . . . 7  |-  ( 1  e.  ( 0 ... ( # `  W
) )  <->  ( 1  e.  NN0  /\  ( # `
 W )  e. 
NN0  /\  1  <_  (
# `  W )
) )
2622, 23, 24, 25syl3anbrc 1246 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  1  e.  ( 0 ... ( # `
 W ) ) )
27 elfz1end 12371 . . . . . . 7  |-  ( (
# `  W )  e.  NN  <->  ( # `  W
)  e.  ( 1 ... ( # `  W
) ) )
2827biimpi 206 . . . . . 6  |-  ( (
# `  W )  e.  NN  ->  ( # `  W
)  e.  ( 1 ... ( # `  W
) ) )
29 fz0fzdiffz0 12448 . . . . . 6  |-  ( ( 1  e.  ( 0 ... ( # `  W
) )  /\  ( # `
 W )  e.  ( 1 ... ( # `
 W ) ) )  ->  ( ( # `
 W )  - 
1 )  e.  ( 0 ... ( # `  W ) ) )
3026, 28, 29syl2anc 693 . . . . 5  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  ( 0 ... ( # `  W ) ) )
31 nn0fz0 12437 . . . . . . 7  |-  ( (
# `  W )  e.  NN0  <->  ( # `  W
)  e.  ( 0 ... ( # `  W
) ) )
3231biimpi 206 . . . . . 6  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  ( 0 ... ( # `  W
) ) )
3323, 32syl 17 . . . . 5  |-  ( (
# `  W )  e.  NN  ->  ( # `  W
)  e.  ( 0 ... ( # `  W
) ) )
3420, 30, 333jca 1242 . . . 4  |-  ( (
# `  W )  e.  NN  ->  ( 0  e.  ( 0 ... ( ( # `  W
)  -  1 ) )  /\  ( (
# `  W )  -  1 )  e.  ( 0 ... ( # `
 W ) )  /\  ( # `  W
)  e.  ( 0 ... ( # `  W
) ) ) )
351, 34syl 17 . . 3  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  (
0  e.  ( 0 ... ( ( # `  W )  -  1 ) )  /\  (
( # `  W )  -  1 )  e.  ( 0 ... ( # `
 W ) )  /\  ( # `  W
)  e.  ( 0 ... ( # `  W
) ) ) )
36 ccatswrd 13456 . . 3  |-  ( ( W  e. Word  V  /\  ( 0  e.  ( 0 ... ( (
# `  W )  -  1 ) )  /\  ( ( # `  W )  -  1 )  e.  ( 0 ... ( # `  W
) )  /\  ( # `
 W )  e.  ( 0 ... ( # `
 W ) ) ) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  ( W substr  <.
( ( # `  W
)  -  1 ) ,  ( # `  W
) >. ) )  =  ( W substr  <. 0 ,  ( # `  W
) >. ) )
3735, 36syldan 487 . 2  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  ( W substr  <.
( ( # `  W
)  -  1 ) ,  ( # `  W
) >. ) )  =  ( W substr  <. 0 ,  ( # `  W
) >. ) )
38 swrdid 13428 . . 3  |-  ( W  e. Word  V  ->  ( W substr  <. 0 ,  (
# `  W ) >. )  =  W )
3938adantr 481 . 2  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. 0 ,  (
# `  W ) >. )  =  W )
4017, 37, 393eqtrd 2660 1  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. ) ++  <" ( lastS  `  W ) "> )  =  W )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  ccats1swrdeq  13469  wrdind  13476  wrd2ind  13477  psgnunilem5  17914  wwlksnextwrd  26792  iwrdsplit  30449  signsvtn0  30647  signstfveq0  30654
  Copyright terms: Public domain W3C validator