MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spllen Structured version   Visualization version   Unicode version

Theorem spllen 13505
Description: The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
spllen.s  |-  ( ph  ->  S  e. Word  A )
spllen.f  |-  ( ph  ->  F  e.  ( 0 ... T ) )
spllen.t  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
spllen.r  |-  ( ph  ->  R  e. Word  A )
Assertion
Ref Expression
spllen  |-  ( ph  ->  ( # `  ( S splice  <. F ,  T ,  R >. ) )  =  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) ) )

Proof of Theorem spllen
StepHypRef Expression
1 spllen.s . . . 4  |-  ( ph  ->  S  e. Word  A )
2 spllen.f . . . 4  |-  ( ph  ->  F  e.  ( 0 ... T ) )
3 spllen.t . . . 4  |-  ( ph  ->  T  e.  ( 0 ... ( # `  S
) ) )
4 spllen.r . . . 4  |-  ( ph  ->  R  e. Word  A )
5 splval 13502 . . . 4  |-  ( ( S  e. Word  A  /\  ( F  e.  (
0 ... T )  /\  T  e.  ( 0 ... ( # `  S
) )  /\  R  e. Word  A ) )  -> 
( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  (
# `  S ) >. ) ) )
61, 2, 3, 4, 5syl13anc 1328 . . 3  |-  ( ph  ->  ( S splice  <. F ,  T ,  R >. )  =  ( ( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T ,  (
# `  S ) >. ) ) )
76fveq2d 6195 . 2  |-  ( ph  ->  ( # `  ( S splice  <. F ,  T ,  R >. ) )  =  ( # `  (
( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
8 swrdcl 13419 . . . . 5  |-  ( S  e. Word  A  ->  ( S substr  <. 0 ,  F >. )  e. Word  A )
91, 8syl 17 . . . 4  |-  ( ph  ->  ( S substr  <. 0 ,  F >. )  e. Word  A
)
10 ccatcl 13359 . . . 4  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A )  ->  ( ( S substr  <. 0 ,  F >. ) ++  R )  e. Word  A
)
119, 4, 10syl2anc 693 . . 3  |-  ( ph  ->  ( ( S substr  <. 0 ,  F >. ) ++  R )  e. Word  A )
12 swrdcl 13419 . . . 4  |-  ( S  e. Word  A  ->  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  A )
131, 12syl 17 . . 3  |-  ( ph  ->  ( S substr  <. T , 
( # `  S )
>. )  e. Word  A )
14 ccatlen 13360 . . 3  |-  ( ( ( ( S substr  <. 0 ,  F >. ) ++  R )  e. Word  A  /\  ( S substr  <. T ,  (
# `  S ) >. )  e. Word  A )  ->  ( # `  (
( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
1511, 13, 14syl2anc 693 . 2  |-  ( ph  ->  ( # `  (
( ( S substr  <. 0 ,  F >. ) ++  R ) ++  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) ) )
16 lencl 13324 . . . . . . 7  |-  ( R  e. Word  A  ->  ( # `
 R )  e. 
NN0 )
174, 16syl 17 . . . . . 6  |-  ( ph  ->  ( # `  R
)  e.  NN0 )
1817nn0cnd 11353 . . . . 5  |-  ( ph  ->  ( # `  R
)  e.  CC )
19 elfzelz 12342 . . . . . . 7  |-  ( F  e.  ( 0 ... T )  ->  F  e.  ZZ )
202, 19syl 17 . . . . . 6  |-  ( ph  ->  F  e.  ZZ )
2120zcnd 11483 . . . . 5  |-  ( ph  ->  F  e.  CC )
2218, 21addcld 10059 . . . 4  |-  ( ph  ->  ( ( # `  R
)  +  F )  e.  CC )
23 elfzel2 12340 . . . . . 6  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ZZ )
243, 23syl 17 . . . . 5  |-  ( ph  ->  ( # `  S
)  e.  ZZ )
2524zcnd 11483 . . . 4  |-  ( ph  ->  ( # `  S
)  e.  CC )
26 elfzelz 12342 . . . . . 6  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  T  e.  ZZ )
273, 26syl 17 . . . . 5  |-  ( ph  ->  T  e.  ZZ )
2827zcnd 11483 . . . 4  |-  ( ph  ->  T  e.  CC )
2922, 25, 28addsub12d 10415 . . 3  |-  ( ph  ->  ( ( ( # `  R )  +  F
)  +  ( (
# `  S )  -  T ) )  =  ( ( # `  S
)  +  ( ( ( # `  R
)  +  F )  -  T ) ) )
30 ccatlen 13360 . . . . . 6  |-  ( ( ( S substr  <. 0 ,  F >. )  e. Word  A  /\  R  e. Word  A )  ->  ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  =  ( (
# `  ( S substr  <.
0 ,  F >. ) )  +  ( # `  R ) ) )
319, 4, 30syl2anc 693 . . . . 5  |-  ( ph  ->  ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  =  ( (
# `  ( S substr  <.
0 ,  F >. ) )  +  ( # `  R ) ) )
32 elfzuz 12338 . . . . . . . . . 10  |-  ( F  e.  ( 0 ... T )  ->  F  e.  ( ZZ>= `  0 )
)
332, 32syl 17 . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ZZ>= ` 
0 ) )
34 eluzfz1 12348 . . . . . . . . 9  |-  ( F  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... F
) )
3533, 34syl 17 . . . . . . . 8  |-  ( ph  ->  0  e.  ( 0 ... F ) )
36 elfzuz3 12339 . . . . . . . . . . 11  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ( ZZ>= `  T )
)
373, 36syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= `  T ) )
38 elfzuz3 12339 . . . . . . . . . . 11  |-  ( F  e.  ( 0 ... T )  ->  T  e.  ( ZZ>= `  F )
)
392, 38syl 17 . . . . . . . . . 10  |-  ( ph  ->  T  e.  ( ZZ>= `  F ) )
40 uztrn 11704 . . . . . . . . . 10  |-  ( ( ( # `  S
)  e.  ( ZZ>= `  T )  /\  T  e.  ( ZZ>= `  F )
)  ->  ( # `  S
)  e.  ( ZZ>= `  F ) )
4137, 39, 40syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= `  F ) )
42 elfzuzb 12336 . . . . . . . . 9  |-  ( F  e.  ( 0 ... ( # `  S
) )  <->  ( F  e.  ( ZZ>= `  0 )  /\  ( # `  S
)  e.  ( ZZ>= `  F ) ) )
4333, 41, 42sylanbrc 698 . . . . . . . 8  |-  ( ph  ->  F  e.  ( 0 ... ( # `  S
) ) )
44 swrdlen 13423 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  0  e.  ( 0 ... F )  /\  F  e.  ( 0 ... ( # `  S
) ) )  -> 
( # `  ( S substr  <. 0 ,  F >. ) )  =  ( F  -  0 ) )
451, 35, 43, 44syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( # `  ( S substr  <. 0 ,  F >. ) )  =  ( F  -  0 ) )
4621subid1d 10381 . . . . . . 7  |-  ( ph  ->  ( F  -  0 )  =  F )
4745, 46eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( # `  ( S substr  <. 0 ,  F >. ) )  =  F )
4847oveq1d 6665 . . . . 5  |-  ( ph  ->  ( ( # `  ( S substr  <. 0 ,  F >. ) )  +  (
# `  R )
)  =  ( F  +  ( # `  R
) ) )
4921, 18addcomd 10238 . . . . 5  |-  ( ph  ->  ( F  +  (
# `  R )
)  =  ( (
# `  R )  +  F ) )
5031, 48, 493eqtrd 2660 . . . 4  |-  ( ph  ->  ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  =  ( (
# `  R )  +  F ) )
51 elfzuz2 12346 . . . . . . 7  |-  ( T  e.  ( 0 ... ( # `  S
) )  ->  ( # `
 S )  e.  ( ZZ>= `  0 )
)
523, 51syl 17 . . . . . 6  |-  ( ph  ->  ( # `  S
)  e.  ( ZZ>= ` 
0 ) )
53 eluzfz2 12349 . . . . . 6  |-  ( (
# `  S )  e.  ( ZZ>= `  0 )  ->  ( # `  S
)  e.  ( 0 ... ( # `  S
) ) )
5452, 53syl 17 . . . . 5  |-  ( ph  ->  ( # `  S
)  e.  ( 0 ... ( # `  S
) ) )
55 swrdlen 13423 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e.  ( 0 ... ( # `  S
) )  /\  ( # `
 S )  e.  ( 0 ... ( # `
 S ) ) )  ->  ( # `  ( S substr  <. T ,  (
# `  S ) >. ) )  =  ( ( # `  S
)  -  T ) )
561, 3, 54, 55syl3anc 1326 . . . 4  |-  ( ph  ->  ( # `  ( S substr  <. T ,  (
# `  S ) >. ) )  =  ( ( # `  S
)  -  T ) )
5750, 56oveq12d 6668 . . 3  |-  ( ph  ->  ( ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( ( # `  R )  +  F
)  +  ( (
# `  S )  -  T ) ) )
5818, 28, 21subsub3d 10422 . . . 4  |-  ( ph  ->  ( ( # `  R
)  -  ( T  -  F ) )  =  ( ( (
# `  R )  +  F )  -  T
) )
5958oveq2d 6666 . . 3  |-  ( ph  ->  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) )  =  ( ( # `  S )  +  ( ( ( # `  R
)  +  F )  -  T ) ) )
6029, 57, 593eqtr4d 2666 . 2  |-  ( ph  ->  ( ( # `  (
( S substr  <. 0 ,  F >. ) ++  R ) )  +  ( # `  ( S substr  <. T , 
( # `  S )
>. ) ) )  =  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) ) )
617, 15, 603eqtrd 2660 1  |-  ( ph  ->  ( # `  ( S splice  <. F ,  T ,  R >. ) )  =  ( ( # `  S
)  +  ( (
# `  R )  -  ( T  -  F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   <.cop 4183   <.cotp 4185   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939    - cmin 10266   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   splice csplice 13296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-substr 13303  df-splice 13304
This theorem is referenced by:  psgnunilem2  17915  efgtlen  18139
  Copyright terms: Public domain W3C validator