MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnunilem2 Structured version   Visualization version   Unicode version

Theorem psgnunilem2 17915
Description: Lemma for psgnuni 17919. Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
psgnunilem2.g  |-  G  =  ( SymGrp `  D )
psgnunilem2.t  |-  T  =  ran  (pmTrsp `  D
)
psgnunilem2.d  |-  ( ph  ->  D  e.  V )
psgnunilem2.w  |-  ( ph  ->  W  e. Word  T )
psgnunilem2.id  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
psgnunilem2.l  |-  ( ph  ->  ( # `  W
)  =  L )
psgnunilem2.ix  |-  ( ph  ->  I  e.  ( 0..^ L ) )
psgnunilem2.a  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
psgnunilem2.al  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
psgnunilem2.in  |-  ( ph  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
Assertion
Ref Expression
psgnunilem2  |-  ( ph  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) )
Distinct variable groups:    j, k, w, A    x, j, D, w    ph, j    j, G   
x, k, G, w   
j, I, k, w, x    T, j, w, x   
j, W, k, w, x    w, L, x
Allowed substitution hints:    ph( x, w, k)    A( x)    D( k)    T( k)    L( j, k)    V( x, w, j, k)

Proof of Theorem psgnunilem2
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnunilem2.w . . . . . . 7  |-  ( ph  ->  W  e. Word  T )
2 wrd0 13330 . . . . . . 7  |-  (/)  e. Word  T
3 splcl 13503 . . . . . . 7  |-  ( ( W  e. Word  T  /\  (/) 
e. Word  T )  ->  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  e. Word  T
)
41, 2, 3sylancl 694 . . . . . 6  |-  ( ph  ->  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  e. Word  T )
54adantr 481 . . . . 5  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( W splice  <.
I ,  ( I  +  2 ) ,  (/) >. )  e. Word  T
)
6 fzossfz 12488 . . . . . . . . . . 11  |-  ( 0..^ L )  C_  (
0 ... L )
7 psgnunilem2.ix . . . . . . . . . . 11  |-  ( ph  ->  I  e.  ( 0..^ L ) )
86, 7sseldi 3601 . . . . . . . . . 10  |-  ( ph  ->  I  e.  ( 0 ... L ) )
9 elfznn0 12433 . . . . . . . . . 10  |-  ( I  e.  ( 0 ... L )  ->  I  e.  NN0 )
108, 9syl 17 . . . . . . . . 9  |-  ( ph  ->  I  e.  NN0 )
11 2nn0 11309 . . . . . . . . . 10  |-  2  e.  NN0
12 nn0addcl 11328 . . . . . . . . . 10  |-  ( ( I  e.  NN0  /\  2  e.  NN0 )  -> 
( I  +  2 )  e.  NN0 )
1310, 11, 12sylancl 694 . . . . . . . . 9  |-  ( ph  ->  ( I  +  2 )  e.  NN0 )
1410nn0red 11352 . . . . . . . . . 10  |-  ( ph  ->  I  e.  RR )
15 nn0addge1 11339 . . . . . . . . . 10  |-  ( ( I  e.  RR  /\  2  e.  NN0 )  ->  I  <_  ( I  + 
2 ) )
1614, 11, 15sylancl 694 . . . . . . . . 9  |-  ( ph  ->  I  <_  ( I  +  2 ) )
17 elfz2nn0 12431 . . . . . . . . 9  |-  ( I  e.  ( 0 ... ( I  +  2 ) )  <->  ( I  e.  NN0  /\  ( I  +  2 )  e. 
NN0  /\  I  <_  ( I  +  2 ) ) )
1810, 13, 16, 17syl3anbrc 1246 . . . . . . . 8  |-  ( ph  ->  I  e.  ( 0 ... ( I  + 
2 ) ) )
19 psgnunilem2.g . . . . . . . . . . 11  |-  G  =  ( SymGrp `  D )
20 psgnunilem2.t . . . . . . . . . . 11  |-  T  =  ran  (pmTrsp `  D
)
21 psgnunilem2.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  V )
22 psgnunilem2.id . . . . . . . . . . 11  |-  ( ph  ->  ( G  gsumg  W )  =  (  _I  |`  D )
)
23 psgnunilem2.l . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  =  L )
24 psgnunilem2.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  dom  (
( W `  I
)  \  _I  )
)
25 psgnunilem2.al . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )
)
2619, 20, 21, 1, 22, 23, 7, 24, 25psgnunilem5 17914 . . . . . . . . . 10  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ L ) )
27 fzofzp1 12565 . . . . . . . . . 10  |-  ( ( I  +  1 )  e.  ( 0..^ L )  ->  ( (
I  +  1 )  +  1 )  e.  ( 0 ... L
) )
2826, 27syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( I  + 
1 )  +  1 )  e.  ( 0 ... L ) )
2910nn0cnd 11353 . . . . . . . . . . 11  |-  ( ph  ->  I  e.  CC )
30 1cnd 10056 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  CC )
3129, 30, 30addassd 10062 . . . . . . . . . 10  |-  ( ph  ->  ( ( I  + 
1 )  +  1 )  =  ( I  +  ( 1  +  1 ) ) )
32 df-2 11079 . . . . . . . . . . 11  |-  2  =  ( 1  +  1 )
3332oveq2i 6661 . . . . . . . . . 10  |-  ( I  +  2 )  =  ( I  +  ( 1  +  1 ) )
3431, 33syl6reqr 2675 . . . . . . . . 9  |-  ( ph  ->  ( I  +  2 )  =  ( ( I  +  1 )  +  1 ) )
3523oveq2d 6666 . . . . . . . . 9  |-  ( ph  ->  ( 0 ... ( # `
 W ) )  =  ( 0 ... L ) )
3628, 34, 353eltr4d 2716 . . . . . . . 8  |-  ( ph  ->  ( I  +  2 )  e.  ( 0 ... ( # `  W
) ) )
372a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e. Word  T )
381, 18, 36, 37spllen 13505 . . . . . . 7  |-  ( ph  ->  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. ) )  =  ( ( # `  W
)  +  ( (
# `  (/) )  -  ( ( I  + 
2 )  -  I
) ) ) )
39 hash0 13158 . . . . . . . . . . 11  |-  ( # `  (/) )  =  0
4039oveq1i 6660 . . . . . . . . . 10  |-  ( (
# `  (/) )  -  ( ( I  + 
2 )  -  I
) )  =  ( 0  -  ( ( I  +  2 )  -  I ) )
41 df-neg 10269 . . . . . . . . . 10  |-  -u (
( I  +  2 )  -  I )  =  ( 0  -  ( ( I  + 
2 )  -  I
) )
4240, 41eqtr4i 2647 . . . . . . . . 9  |-  ( (
# `  (/) )  -  ( ( I  + 
2 )  -  I
) )  =  -u ( ( I  + 
2 )  -  I
)
43 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
44 pncan2 10288 . . . . . . . . . . 11  |-  ( ( I  e.  CC  /\  2  e.  CC )  ->  ( ( I  + 
2 )  -  I
)  =  2 )
4529, 43, 44sylancl 694 . . . . . . . . . 10  |-  ( ph  ->  ( ( I  + 
2 )  -  I
)  =  2 )
4645negeqd 10275 . . . . . . . . 9  |-  ( ph  -> 
-u ( ( I  +  2 )  -  I )  =  -u
2 )
4742, 46syl5eq 2668 . . . . . . . 8  |-  ( ph  ->  ( ( # `  (/) )  -  ( ( I  + 
2 )  -  I
) )  =  -u
2 )
4823, 47oveq12d 6668 . . . . . . 7  |-  ( ph  ->  ( ( # `  W
)  +  ( (
# `  (/) )  -  ( ( I  + 
2 )  -  I
) ) )  =  ( L  +  -u
2 ) )
49 elfzel2 12340 . . . . . . . . . 10  |-  ( I  e.  ( 0 ... L )  ->  L  e.  ZZ )
508, 49syl 17 . . . . . . . . 9  |-  ( ph  ->  L  e.  ZZ )
5150zcnd 11483 . . . . . . . 8  |-  ( ph  ->  L  e.  CC )
52 negsub 10329 . . . . . . . 8  |-  ( ( L  e.  CC  /\  2  e.  CC )  ->  ( L  +  -u
2 )  =  ( L  -  2 ) )
5351, 43, 52sylancl 694 . . . . . . 7  |-  ( ph  ->  ( L  +  -u
2 )  =  ( L  -  2 ) )
5438, 48, 533eqtrd 2660 . . . . . 6  |-  ( ph  ->  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. ) )  =  ( L  -  2 ) )
5554adantr 481 . . . . 5  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. ) )  =  ( L  -  2 ) )
56 splid 13504 . . . . . . . . 9  |-  ( ( W  e. Word  T  /\  ( I  e.  (
0 ... ( I  + 
2 ) )  /\  ( I  +  2
)  e.  ( 0 ... ( # `  W
) ) ) )  ->  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >.
) >. )  =  W )
571, 18, 36, 56syl12anc 1324 . . . . . . . 8  |-  ( ph  ->  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >.
) >. )  =  W )
5857oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >.
) >. ) )  =  ( G  gsumg  W ) )
5958adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >. ) >. )
)  =  ( G 
gsumg  W ) )
60 eqid 2622 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
6119symggrp 17820 . . . . . . . . . 10  |-  ( D  e.  V  ->  G  e.  Grp )
6221, 61syl 17 . . . . . . . . 9  |-  ( ph  ->  G  e.  Grp )
63 grpmnd 17429 . . . . . . . . 9  |-  ( G  e.  Grp  ->  G  e.  Mnd )
6462, 63syl 17 . . . . . . . 8  |-  ( ph  ->  G  e.  Mnd )
6564adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  G  e.  Mnd )
6620, 19, 60symgtrf 17889 . . . . . . . . . 10  |-  T  C_  ( Base `  G )
67 sswrd 13313 . . . . . . . . . 10  |-  ( T 
C_  ( Base `  G
)  -> Word  T  C_ Word  ( Base `  G ) )
6866, 67ax-mp 5 . . . . . . . . 9  |- Word  T  C_ Word  (
Base `  G )
6968, 1sseldi 3601 . . . . . . . 8  |-  ( ph  ->  W  e. Word  ( Base `  G ) )
7069adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  W  e. Word  (
Base `  G )
)
7118adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  I  e.  ( 0 ... (
I  +  2 ) ) )
7236adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( I  +  2 )  e.  ( 0 ... ( # `
 W ) ) )
73 swrdcl 13419 . . . . . . . . 9  |-  ( W  e. Word  ( Base `  G
)  ->  ( W substr  <.
I ,  ( I  +  2 ) >.
)  e. Word  ( Base `  G ) )
7469, 73syl 17 . . . . . . . 8  |-  ( ph  ->  ( W substr  <. I ,  ( I  +  2 ) >. )  e. Word  ( Base `  G ) )
7574adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( W substr  <.
I ,  ( I  +  2 ) >.
)  e. Word  ( Base `  G ) )
76 wrd0 13330 . . . . . . . 8  |-  (/)  e. Word  ( Base `  G )
7776a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  (/)  e. Word  ( Base `  G ) )
7823oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 0..^ ( # `  W ) )  =  ( 0..^ L ) )
7926, 78eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ph  ->  ( I  +  1 )  e.  ( 0..^ ( # `  W
) ) )
80 swrds2 13685 . . . . . . . . . . . 12  |-  ( ( W  e. Word  T  /\  I  e.  NN0  /\  (
I  +  1 )  e.  ( 0..^ (
# `  W )
) )  ->  ( W substr  <. I ,  ( I  +  2 )
>. )  =  <" ( W `  I
) ( W `  ( I  +  1
) ) "> )
811, 10, 79, 80syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  ( W substr  <. I ,  ( I  +  2 ) >. )  =  <" ( W `  I
) ( W `  ( I  +  1
) ) "> )
8281oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg  ( W substr  <. I ,  ( I  +  2 ) >. ) )  =  ( G  gsumg 
<" ( W `  I ) ( W `
 ( I  + 
1 ) ) "> ) )
83 wrdf 13310 . . . . . . . . . . . . . . 15  |-  ( W  e. Word  T  ->  W : ( 0..^ (
# `  W )
) --> T )
841, 83syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  W : ( 0..^ ( # `  W
) ) --> T )
8578feq2d 6031 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( W : ( 0..^ ( # `  W
) ) --> T  <->  W :
( 0..^ L ) --> T ) )
8684, 85mpbid 222 . . . . . . . . . . . . 13  |-  ( ph  ->  W : ( 0..^ L ) --> T )
8786, 7ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  ( W `  I
)  e.  T )
8866, 87sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  ( W `  I
)  e.  ( Base `  G ) )
8986, 26ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( ph  ->  ( W `  (
I  +  1 ) )  e.  T )
9066, 89sseldi 3601 . . . . . . . . . . 11  |-  ( ph  ->  ( W `  (
I  +  1 ) )  e.  ( Base `  G ) )
91 eqid 2622 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
9260, 91gsumws2 17379 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( W `  I )  e.  ( Base `  G
)  /\  ( W `  ( I  +  1 ) )  e.  (
Base `  G )
)  ->  ( G  gsumg  <" ( W `  I ) ( W `
 ( I  + 
1 ) ) "> )  =  ( ( W `  I
) ( +g  `  G
) ( W `  ( I  +  1
) ) ) )
9364, 88, 90, 92syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( G  gsumg 
<" ( W `  I ) ( W `
 ( I  + 
1 ) ) "> )  =  ( ( W `  I
) ( +g  `  G
) ( W `  ( I  +  1
) ) ) )
9419, 60, 91symgov 17810 . . . . . . . . . . 11  |-  ( ( ( W `  I
)  e.  ( Base `  G )  /\  ( W `  ( I  +  1 ) )  e.  ( Base `  G
) )  ->  (
( W `  I
) ( +g  `  G
) ( W `  ( I  +  1
) ) )  =  ( ( W `  I )  o.  ( W `  ( I  +  1 ) ) ) )
9588, 90, 94syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( W `  I ) ( +g  `  G ) ( W `
 ( I  + 
1 ) ) )  =  ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) ) )
9682, 93, 953eqtrd 2660 . . . . . . . . 9  |-  ( ph  ->  ( G  gsumg  ( W substr  <. I ,  ( I  +  2 ) >. ) )  =  ( ( W `  I )  o.  ( W `  ( I  +  1 ) ) ) )
9796adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( G  gsumg  ( W substr  <. I ,  ( I  +  2 )
>. ) )  =  ( ( W `  I
)  o.  ( W `
 ( I  + 
1 ) ) ) )
98 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)
9919symgid 17821 . . . . . . . . . . 11  |-  ( D  e.  V  ->  (  _I  |`  D )  =  ( 0g `  G
) )
10021, 99syl 17 . . . . . . . . . 10  |-  ( ph  ->  (  _I  |`  D )  =  ( 0g `  G ) )
101 eqid 2622 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
102101gsum0 17278 . . . . . . . . . 10  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
103100, 102syl6eqr 2674 . . . . . . . . 9  |-  ( ph  ->  (  _I  |`  D )  =  ( G  gsumg  (/) ) )
104103adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  (  _I  |`  D )  =  ( G  gsumg  (/) ) )
10597, 98, 1043eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( G  gsumg  ( W substr  <. I ,  ( I  +  2 )
>. ) )  =  ( G  gsumg  (/) ) )
10660, 65, 70, 71, 72, 75, 77, 105gsumspl 17381 . . . . . 6  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >. ) >. )
)  =  ( G 
gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
) )
10722adantr 481 . . . . . 6  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( G  gsumg  W )  =  (  _I  |`  D ) )
10859, 106, 1073eqtr3d 2664 . . . . 5  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. ) )  =  (  _I  |`  D ) )
109 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  ->  ( # `  x
)  =  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
) )
110109eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  ->  ( ( # `  x
)  =  ( L  -  2 )  <->  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. ) )  =  ( L  -  2 ) ) )
111 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  ->  ( G  gsumg  x )  =  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
) )
112111eqeq1d 2624 . . . . . . 7  |-  ( x  =  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  ->  ( ( G  gsumg  x )  =  (  _I  |`  D )  <-> 
( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
)  =  (  _I  |`  D ) ) )
113110, 112anbi12d 747 . . . . . 6  |-  ( x  =  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  ->  ( ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) )  <->  ( ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
)  =  ( L  -  2 )  /\  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
)  =  (  _I  |`  D ) ) ) )
114113rspcev 3309 . . . . 5  |-  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )  e. Word  T  /\  ( (
# `  ( W splice  <.
I ,  ( I  +  2 ) ,  (/) >. ) )  =  ( L  -  2 )  /\  ( G 
gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  (/) >. )
)  =  (  _I  |`  D ) ) )  ->  E. x  e. Word  T
( ( # `  x
)  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D )
) )
1155, 55, 108, 114syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
116 psgnunilem2.in . . . . 5  |-  ( ph  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
117116adantr 481 . . . 4  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  -.  E. x  e. Word  T ( ( # `  x )  =  ( L  -  2 )  /\  ( G  gsumg  x )  =  (  _I  |`  D ) ) )
118115, 117pm2.21dd 186 . . 3  |-  ( (
ph  /\  ( ( W `  I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )
)  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) )
119118ex 450 . 2  |-  ( ph  ->  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) ) )
1201adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  ->  W  e. Word  T )
121 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
r  e.  T )
122 simprr 796 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
s  e.  T )
123121, 122s2cld 13616 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  ->  <" r s ">  e. Word  T )
124 splcl 13503 . . . . . . 7  |-  ( ( W  e. Word  T  /\  <" r s ">  e. Word  T )  ->  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  e. Word  T )
125120, 123, 124syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  e. Word  T )
126125adantrr 753 . . . . 5  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  e. Word  T )
12764adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  G  e.  Mnd )
12869adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  W  e. Word  ( Base `  G ) )
12918adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  I  e.  ( 0 ... ( I  +  2 ) ) )
13036adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( I  + 
2 )  e.  ( 0 ... ( # `  W ) ) )
13168, 123sseldi 3601 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  ->  <" r s ">  e. Word  ( Base `  G ) )
132131adantrr 753 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  <" r s ">  e. Word  ( Base `  G ) )
13374adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( W substr  <. I ,  ( I  +  2 ) >. )  e. Word  ( Base `  G ) )
134 simprr1 1109 . . . . . . . . 9  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s ) )
13596adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  ( W substr  <. I ,  ( I  +  2 ) >.
) )  =  ( ( W `  I
)  o.  ( W `
 ( I  + 
1 ) ) ) )
13664adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  ->  G  e.  Mnd )
13766a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  C_  ( Base `  G ) )
138137sselda 3603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  r  e.  T )  ->  r  e.  ( Base `  G
) )
139138adantrr 753 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
r  e.  ( Base `  G ) )
140137sselda 3603 . . . . . . . . . . . . 13  |-  ( (
ph  /\  s  e.  T )  ->  s  e.  ( Base `  G
) )
141140adantrl 752 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
s  e.  ( Base `  G ) )
14260, 91gsumws2 17379 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  r  e.  ( Base `  G )  /\  s  e.  ( Base `  G
) )  ->  ( G  gsumg 
<" r s "> )  =  ( r ( +g  `  G
) s ) )
143136, 139, 141, 142syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( G  gsumg 
<" r s "> )  =  ( r ( +g  `  G
) s ) )
14419, 60, 91symgov 17810 . . . . . . . . . . . 12  |-  ( ( r  e.  ( Base `  G )  /\  s  e.  ( Base `  G
) )  ->  (
r ( +g  `  G
) s )  =  ( r  o.  s
) )
145139, 141, 144syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( r ( +g  `  G ) s )  =  ( r  o.  s ) )
146143, 145eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( G  gsumg 
<" r s "> )  =  ( r  o.  s ) )
147146adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  <" r
s "> )  =  ( r  o.  s ) )
148134, 135, 1473eqtr4rd 2667 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  <" r
s "> )  =  ( G  gsumg  ( W substr  <. I ,  ( I  +  2 ) >.
) ) )
14960, 127, 128, 129, 130, 132, 133, 148gsumspl 17381 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) )  =  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >.
) >. ) ) )
15058adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  ( W substr  <. I ,  ( I  +  2 ) >. ) >. )
)  =  ( G 
gsumg  W ) )
15122adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  W )  =  (  _I  |`  D ) )
152149, 150, 1513eqtrd 2660 . . . . . 6  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) )  =  (  _I  |`  D ) )
15318adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  ->  I  e.  ( 0 ... ( I  + 
2 ) ) )
15436adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( I  +  2 )  e.  ( 0 ... ( # `  W
) ) )
155120, 153, 154, 123spllen 13505 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( # `  ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) )  =  ( ( # `  W
)  +  ( (
# `  <" r
s "> )  -  ( ( I  +  2 )  -  I ) ) ) )
156 s2len 13634 . . . . . . . . . . . . 13  |-  ( # `  <" r s "> )  =  2
157156oveq1i 6660 . . . . . . . . . . . 12  |-  ( (
# `  <" r
s "> )  -  ( ( I  +  2 )  -  I ) )  =  ( 2  -  (
( I  +  2 )  -  I ) )
15845oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  -  (
( I  +  2 )  -  I ) )  =  ( 2  -  2 ) )
15943subidi 10352 . . . . . . . . . . . . 13  |-  ( 2  -  2 )  =  0
160158, 159syl6eq 2672 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  -  (
( I  +  2 )  -  I ) )  =  0 )
161157, 160syl5eq 2668 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  <" r s "> )  -  ( (
I  +  2 )  -  I ) )  =  0 )
162161oveq2d 6666 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  W
)  +  ( (
# `  <" r
s "> )  -  ( ( I  +  2 )  -  I ) ) )  =  ( ( # `  W )  +  0 ) )
16323, 51eqeltrd 2701 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  e.  CC )
164163addid1d 10236 . . . . . . . . . 10  |-  ( ph  ->  ( ( # `  W
)  +  0 )  =  ( # `  W
) )
165162, 164, 233eqtrd 2660 . . . . . . . . 9  |-  ( ph  ->  ( ( # `  W
)  +  ( (
# `  <" r
s "> )  -  ( ( I  +  2 )  -  I ) ) )  =  L )
166165adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( # `  W
)  +  ( (
# `  <" r
s "> )  -  ( ( I  +  2 )  -  I ) ) )  =  L )
167155, 166eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( # `  ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) )  =  L )
168167adantrr 753 . . . . . 6  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. )
)  =  L )
169152, 168jca 554 . . . . 5  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( ( G 
gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  (  _I  |`  D )  /\  ( # `
 ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  L ) )
17026adantr 481 . . . . . 6  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( I  + 
1 )  e.  ( 0..^ L ) )
171 simprr2 1110 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  A  e.  dom  ( s  \  _I  ) )
172 1nn0 11308 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
173 2nn 11185 . . . . . . . . . . . . . . 15  |-  2  e.  NN
174 1lt2 11194 . . . . . . . . . . . . . . 15  |-  1  <  2
175 elfzo0 12508 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( 0..^ 2 )  <->  ( 1  e. 
NN0  /\  2  e.  NN  /\  1  <  2
) )
176172, 173, 174, 175mpbir3an 1244 . . . . . . . . . . . . . 14  |-  1  e.  ( 0..^ 2 )
177156oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( 0..^ ( # `  <" r s "> ) )  =  ( 0..^ 2 )
178176, 177eleqtrri 2700 . . . . . . . . . . . . 13  |-  1  e.  ( 0..^ ( # `  <" r s "> ) )
179178a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
1  e.  ( 0..^ ( # `  <" r s "> ) ) )
180120, 153, 154, 123, 179splfv2a 13507 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  1 ) )  =  (
<" r s "> `  1 )
)
181 s2fv1 13633 . . . . . . . . . . . 12  |-  ( s  e.  T  ->  ( <" r s "> `  1 )  =  s )
182181ad2antll 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( <" r s "> `  1
)  =  s )
183180, 182eqtrd 2656 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  1 ) )  =  s )
184183adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  (
I  +  1 ) )  =  s )
185184difeq1d 3727 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  ( I  +  1 ) )  \  _I  )  =  ( s  \  _I  ) )
186185dmeqd 5326 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  dom  ( (
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  1 ) )  \  _I  )  =  dom  ( s 
\  _I  ) )
187171, 186eleqtrrd 2704 . . . . . 6  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  (
I  +  1 ) )  \  _I  )
)
188 fzosplitsni 12579 . . . . . . . . . . 11  |-  ( I  e.  ( ZZ>= `  0
)  ->  ( j  e.  ( 0..^ ( I  +  1 ) )  <-> 
( j  e.  ( 0..^ I )  \/  j  =  I ) ) )
189 nn0uz 11722 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
190188, 189eleq2s 2719 . . . . . . . . . 10  |-  ( I  e.  NN0  ->  ( j  e.  ( 0..^ ( I  +  1 ) )  <->  ( j  e.  ( 0..^ I )  \/  j  =  I ) ) )
19110, 190syl 17 . . . . . . . . 9  |-  ( ph  ->  ( j  e.  ( 0..^ ( I  + 
1 ) )  <->  ( j  e.  ( 0..^ I )  \/  j  =  I ) ) )
192191adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( j  e.  ( 0..^ ( I  +  1 ) )  <-> 
( j  e.  ( 0..^ I )  \/  j  =  I ) ) )
193 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  ( W `  k )  =  ( W `  j ) )
194193difeq1d 3727 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  j  ->  (
( W `  k
)  \  _I  )  =  ( ( W `
 j )  \  _I  ) )
195194dmeqd 5326 . . . . . . . . . . . . . . . . 17  |-  ( k  =  j  ->  dom  ( ( W `  k )  \  _I  )  =  dom  ( ( W `  j ) 
\  _I  ) )
196195eleq2d 2687 . . . . . . . . . . . . . . . 16  |-  ( k  =  j  ->  ( A  e.  dom  ( ( W `  k ) 
\  _I  )  <->  A  e.  dom  ( ( W `  j )  \  _I  ) ) )
197196notbid 308 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  ( -.  A  e.  dom  ( ( W `  k )  \  _I  ) 
<->  -.  A  e.  dom  ( ( W `  j )  \  _I  ) ) )
198197rspccva 3308 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  ( 0..^ I )  -.  A  e.  dom  (
( W `  k
)  \  _I  )  /\  j  e.  (
0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  j )  \  _I  ) )
19925, 198sylan 488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  j )  \  _I  ) )
200199adantlr 751 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( W `  j )  \  _I  ) )
2011ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  W  e. Word  T
)
20218ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  I  e.  ( 0 ... ( I  +  2 ) ) )
20336ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  ( I  + 
2 )  e.  ( 0 ... ( # `  W ) ) )
204123adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  <" r s ">  e. Word  T
)
205 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  j  e.  ( 0..^ I ) )
206201, 202, 203, 204, 205splfv1 13506 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  =  ( W `
 j ) )
207206difeq1d 3727 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  j )  \  _I  )  =  ( ( W `  j )  \  _I  ) )
208207dmeqd 5326 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  dom  ( (
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  )  =  dom  ( ( W `  j ) 
\  _I  ) )
209200, 208neleqtrrd 2723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
r  e.  T  /\  s  e.  T )
)  /\  j  e.  ( 0..^ I ) )  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
)
210209ex 450 . . . . . . . . . 10  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( j  e.  ( 0..^ I )  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
) )
211210adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( j  e.  ( 0..^ I )  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
) )
212 simprr3 1111 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  -.  A  e.  dom  ( r  \  _I  ) )
213 0nn0 11307 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  NN0
214 2pos 11112 . . . . . . . . . . . . . . . . . . . 20  |-  0  <  2
215 elfzo0 12508 . . . . . . . . . . . . . . . . . . . 20  |-  ( 0  e.  ( 0..^ 2 )  <->  ( 0  e. 
NN0  /\  2  e.  NN  /\  0  <  2
) )
216213, 173, 214, 215mpbir3an 1244 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  ( 0..^ 2 )
217216, 177eleqtrri 2700 . . . . . . . . . . . . . . . . . 18  |-  0  e.  ( 0..^ ( # `  <" r s "> ) )
218217a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
0  e.  ( 0..^ ( # `  <" r s "> ) ) )
219120, 153, 154, 123, 218splfv2a 13507 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  0 ) )  =  (
<" r s "> `  0 )
)
22029addid1d 10236 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( I  +  0 )  =  I )
221220adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( I  +  0 )  =  I )
222221fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  0 ) )  =  ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  I ) )
223 s2fv0 13632 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  T  ->  ( <" r s "> `  0 )  =  r )
224223ad2antrl 764 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( <" r s "> `  0
)  =  r )
225219, 222, 2243eqtr3d 2664 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  I )  =  r )
226225difeq1d 3727 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  I
)  \  _I  )  =  ( r  \  _I  ) )
227226dmeqd 5326 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  ->  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  I
)  \  _I  )  =  dom  ( r  \  _I  ) )
228227eleq2d 2687 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  I
)  \  _I  )  <->  A  e.  dom  ( r 
\  _I  ) ) )
229228adantrr 753 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( A  e. 
dom  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  I )  \  _I  ) 
<->  A  e.  dom  (
r  \  _I  )
) )
230212, 229mtbird 315 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  I
)  \  _I  )
)
231 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( j  =  I  ->  (
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  =  ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  I ) )
232231difeq1d 3727 . . . . . . . . . . . . 13  |-  ( j  =  I  ->  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  )  =  ( (
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  I )  \  _I  ) )
233232dmeqd 5326 . . . . . . . . . . . 12  |-  ( j  =  I  ->  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )  =  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  I )  \  _I  ) )
234233eleq2d 2687 . . . . . . . . . . 11  |-  ( j  =  I  ->  ( A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) 
<->  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  I )  \  _I  ) ) )
235234notbid 308 . . . . . . . . . 10  |-  ( j  =  I  ->  ( -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )  <->  -.  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  I )  \  _I  ) ) )
236230, 235syl5ibrcom 237 . . . . . . . . 9  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( j  =  I  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  j )  \  _I  ) ) )
237211, 236jaod 395 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( ( j  e.  ( 0..^ I )  \/  j  =  I )  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) ) )
238192, 237sylbid 230 . . . . . . 7  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( j  e.  ( 0..^ ( I  +  1 ) )  ->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
) )
239238ralrimiv 2965 . . . . . 6  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  A. j  e.  ( 0..^ ( I  + 
1 ) )  -.  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) )
240170, 187, 2393jca 1242 . . . . 5  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  (
I  +  1 ) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  + 
1 ) )  -.  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) ) )
241 oveq2 6658 . . . . . . . . 9  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( G  gsumg  w )  =  ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
) )
242241eqeq1d 2624 . . . . . . . 8  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( G  gsumg  w )  =  (  _I  |`  D )  <-> 
( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  (  _I  |`  D ) ) )
243 fveq2 6191 . . . . . . . . 9  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( # `  w
)  =  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
) )
244243eqeq1d 2624 . . . . . . . 8  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( # `  w
)  =  L  <->  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. )
)  =  L ) )
245242, 244anbi12d 747 . . . . . . 7  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  <-> 
( ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) )  =  (  _I  |`  D )  /\  ( # `  ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. )
)  =  L ) ) )
246 fveq1 6190 . . . . . . . . . . 11  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( w `  (
I  +  1 ) )  =  ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  ( I  +  1 ) ) )
247246difeq1d 3727 . . . . . . . . . 10  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( w `  ( I  +  1
) )  \  _I  )  =  ( (
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  1 ) )  \  _I  ) )
248247dmeqd 5326 . . . . . . . . 9  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  dom  ( ( w `
 ( I  + 
1 ) )  \  _I  )  =  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  (
I  +  1 ) )  \  _I  )
)
249248eleq2d 2687 . . . . . . . 8  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  ) 
<->  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  ( I  +  1 ) )  \  _I  ) ) )
250 fveq1 6190 . . . . . . . . . . . . 13  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( w `  j
)  =  ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  j ) )
251250difeq1d 3727 . . . . . . . . . . . 12  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( w `  j )  \  _I  )  =  ( (
( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) )
252251dmeqd 5326 . . . . . . . . . . 11  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  dom  ( ( w `
 j )  \  _I  )  =  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
)
253252eleq2d 2687 . . . . . . . . . 10  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( A  e.  dom  ( ( w `  j )  \  _I  ) 
<->  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) ) )
254253notbid 308 . . . . . . . . 9  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( -.  A  e. 
dom  ( ( w `
 j )  \  _I  )  <->  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
) )
255254ralbidv 2986 . . . . . . . 8  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) 
<-> 
A. j  e.  ( 0..^ ( I  + 
1 ) )  -.  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) ) )
256249, 2553anbi23d 1402 . . . . . . 7  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) )  <->  ( (
I  +  1 )  e.  ( 0..^ L )  /\  A  e. 
dom  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r s "> >. ) `  ( I  +  1 ) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  j
)  \  _I  )
) ) )
257245, 256anbi12d 747 . . . . . 6  |-  ( w  =  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  ->  ( ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) )  <->  ( (
( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  (  _I  |`  D )  /\  ( # `
 ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  (
I  +  1 ) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  + 
1 ) )  -.  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) ) ) ) )
258257rspcev 3309 . . . . 5  |-  ( ( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )  e. Word  T  /\  ( ( ( G  gsumg  ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  (  _I  |`  D )  /\  ( # `
 ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. )
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( ( W splice  <. I ,  ( I  +  2 ) , 
<" r s "> >. ) `  (
I  +  1 ) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  + 
1 ) )  -.  A  e.  dom  (
( ( W splice  <. I ,  ( I  +  2 ) ,  <" r
s "> >. ) `  j )  \  _I  ) ) ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) )
259126, 169, 240, 258syl12anc 1324 . . . 4  |-  ( (
ph  /\  ( (
r  e.  T  /\  s  e.  T )  /\  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) )
260259expr 643 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  s  e.  T ) )  -> 
( ( ( ( W `  I )  o.  ( W `  ( I  +  1
) ) )  =  ( r  o.  s
)  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) ) )
261260rexlimdvva 3038 . 2  |-  ( ph  ->  ( E. r  e.  T  E. s  e.  T  ( ( ( W `  I )  o.  ( W `  ( I  +  1
) ) )  =  ( r  o.  s
)  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) )  ->  E. w  e. Word  T ( ( ( G  gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) ) )
26220, 21, 87, 89, 24psgnunilem1 17913 . 2  |-  ( ph  ->  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  (  _I  |`  D )  \/  E. r  e.  T  E. s  e.  T  ( ( ( W `
 I )  o.  ( W `  (
I  +  1 ) ) )  =  ( r  o.  s )  /\  A  e.  dom  ( s  \  _I  )  /\  -.  A  e. 
dom  ( r  \  _I  ) ) ) )
263119, 261, 262mpjaod 396 1  |-  ( ph  ->  E. w  e. Word  T
( ( ( G 
gsumg  w )  =  (  _I  |`  D )  /\  ( # `  w
)  =  L )  /\  ( ( I  +  1 )  e.  ( 0..^ L )  /\  A  e.  dom  ( ( w `  ( I  +  1
) )  \  _I  )  /\  A. j  e.  ( 0..^ ( I  +  1 ) )  -.  A  e.  dom  ( ( w `  j )  \  _I  ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574   (/)c0 3915   <.cop 4183   <.cotp 4185   class class class wbr 4653    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295   splice csplice 13296   <"cs2 13586   Basecbs 15857   +g cplusg 15941   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Grpcgrp 17422   SymGrpcsymg 17797  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-subg 17591  df-symg 17798  df-pmtr 17862
This theorem is referenced by:  psgnunilem3  17916
  Copyright terms: Public domain W3C validator