Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  submomnd Structured version   Visualization version   Unicode version

Theorem submomnd 29710
Description: A submonoid of an ordered monoid is also ordered. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Assertion
Ref Expression
submomnd  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  ( Ms  A )  e. oMnd )

Proof of Theorem submomnd
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . 2  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  ( Ms  A )  e.  Mnd )
2 omndtos 29705 . . . 4  |-  ( M  e. oMnd  ->  M  e. Toset )
32adantr 481 . . 3  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  M  e. Toset )
4 reldmress 15926 . . . . . . . 8  |-  Rel  doms
54ovprc2 6685 . . . . . . 7  |-  ( -.  A  e.  _V  ->  ( Ms  A )  =  (/) )
65fveq2d 6195 . . . . . 6  |-  ( -.  A  e.  _V  ->  (
Base `  ( Ms  A
) )  =  (
Base `  (/) ) )
76adantl 482 . . . . 5  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  -.  A  e. 
_V )  ->  ( Base `  ( Ms  A ) )  =  ( Base `  (/) ) )
8 base0 15912 . . . . 5  |-  (/)  =  (
Base `  (/) )
97, 8syl6eqr 2674 . . . 4  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  -.  A  e. 
_V )  ->  ( Base `  ( Ms  A ) )  =  (/) )
10 eqid 2622 . . . . . . . 8  |-  ( Base `  ( Ms  A ) )  =  ( Base `  ( Ms  A ) )
11 eqid 2622 . . . . . . . 8  |-  ( 0g
`  ( Ms  A ) )  =  ( 0g
`  ( Ms  A ) )
1210, 11mndidcl 17308 . . . . . . 7  |-  ( ( Ms  A )  e.  Mnd  ->  ( 0g `  ( Ms  A ) )  e.  ( Base `  ( Ms  A ) ) )
13 ne0i 3921 . . . . . . 7  |-  ( ( 0g `  ( Ms  A ) )  e.  (
Base `  ( Ms  A
) )  ->  ( Base `  ( Ms  A ) )  =/=  (/) )
1412, 13syl 17 . . . . . 6  |-  ( ( Ms  A )  e.  Mnd  ->  ( Base `  ( Ms  A ) )  =/=  (/) )
1514ad2antlr 763 . . . . 5  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  -.  A  e. 
_V )  ->  ( Base `  ( Ms  A ) )  =/=  (/) )
1615neneqd 2799 . . . 4  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  -.  A  e. 
_V )  ->  -.  ( Base `  ( Ms  A
) )  =  (/) )
179, 16condan 835 . . 3  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  A  e.  _V )
18 resstos 29660 . . 3  |-  ( ( M  e. Toset  /\  A  e. 
_V )  ->  ( Ms  A )  e. Toset )
193, 17, 18syl2anc 693 . 2  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  ( Ms  A )  e. Toset )
20 simplll 798 . . . . . 6  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  M  e. oMnd )
21 eqid 2622 . . . . . . . . . . 11  |-  ( Ms  A )  =  ( Ms  A )
22 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  M )  =  (
Base `  M )
2321, 22ressbas 15930 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( A  i^i  ( Base `  M
) )  =  (
Base `  ( Ms  A
) ) )
24 inss2 3834 . . . . . . . . . 10  |-  ( A  i^i  ( Base `  M
) )  C_  ( Base `  M )
2523, 24syl6eqssr 3656 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( Base `  ( Ms  A ) )  C_  ( Base `  M ) )
2617, 25syl 17 . . . . . . . 8  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  ( Base `  ( Ms  A ) )  C_  ( Base `  M )
)
2726ad2antrr 762 . . . . . . 7  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  ( Base `  ( Ms  A ) )  C_  ( Base `  M )
)
28 simplr1 1103 . . . . . . 7  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  a  e.  (
Base `  ( Ms  A
) ) )
2927, 28sseldd 3604 . . . . . 6  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  a  e.  (
Base `  M )
)
30 simplr2 1104 . . . . . . 7  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  b  e.  (
Base `  ( Ms  A
) ) )
3127, 30sseldd 3604 . . . . . 6  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  b  e.  (
Base `  M )
)
32 simplr3 1105 . . . . . . 7  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  c  e.  (
Base `  ( Ms  A
) ) )
3327, 32sseldd 3604 . . . . . 6  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  c  e.  (
Base `  M )
)
34 eqid 2622 . . . . . . . . . . 11  |-  ( le
`  M )  =  ( le `  M
)
3521, 34ressle 16059 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( le `  M )  =  ( le `  ( Ms  A ) ) )
3617, 35syl 17 . . . . . . . . 9  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  ( le `  M )  =  ( le `  ( Ms  A ) ) )
3736adantr 481 . . . . . . . 8  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( le `  M )  =  ( le `  ( Ms  A ) ) )
3837breqd 4664 . . . . . . 7  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( a
( le `  M
) b  <->  a ( le `  ( Ms  A ) ) b ) )
3938biimpar 502 . . . . . 6  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  a ( le
`  M ) b )
40 eqid 2622 . . . . . . 7  |-  ( +g  `  M )  =  ( +g  `  M )
4122, 34, 40omndadd 29706 . . . . . 6  |-  ( ( M  e. oMnd  /\  (
a  e.  ( Base `  M )  /\  b  e.  ( Base `  M
)  /\  c  e.  ( Base `  M )
)  /\  a ( le `  M ) b )  ->  ( a
( +g  `  M ) c ) ( le
`  M ) ( b ( +g  `  M
) c ) )
4220, 29, 31, 33, 39, 41syl131anc 1339 . . . . 5  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  ( a ( +g  `  M ) c ) ( le
`  M ) ( b ( +g  `  M
) c ) )
4317adantr 481 . . . . . . . . 9  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  A  e.  _V )
4421, 40ressplusg 15993 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( +g  `  M )  =  ( +g  `  ( Ms  A ) ) )
4543, 44syl 17 . . . . . . . 8  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( +g  `  M )  =  ( +g  `  ( Ms  A ) ) )
4645oveqd 6667 . . . . . . 7  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( a
( +g  `  M ) c )  =  ( a ( +g  `  ( Ms  A ) ) c ) )
4743, 35syl 17 . . . . . . 7  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( le `  M )  =  ( le `  ( Ms  A ) ) )
4845oveqd 6667 . . . . . . 7  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( b
( +g  `  M ) c )  =  ( b ( +g  `  ( Ms  A ) ) c ) )
4946, 47, 48breq123d 4667 . . . . . 6  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( (
a ( +g  `  M
) c ) ( le `  M ) ( b ( +g  `  M ) c )  <-> 
( a ( +g  `  ( Ms  A ) ) c ) ( le `  ( Ms  A ) ) ( b ( +g  `  ( Ms  A ) ) c ) ) )
5049adantr 481 . . . . 5  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  ( ( a ( +g  `  M
) c ) ( le `  M ) ( b ( +g  `  M ) c )  <-> 
( a ( +g  `  ( Ms  A ) ) c ) ( le `  ( Ms  A ) ) ( b ( +g  `  ( Ms  A ) ) c ) ) )
5142, 50mpbid 222 . . . 4  |-  ( ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  /\  a ( le `  ( Ms  A ) ) b )  ->  ( a ( +g  `  ( Ms  A ) ) c ) ( le `  ( Ms  A ) ) ( b ( +g  `  ( Ms  A ) ) c ) )
5251ex 450 . . 3  |-  ( ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  /\  ( a  e.  ( Base `  ( Ms  A ) )  /\  b  e.  ( Base `  ( Ms  A ) )  /\  c  e.  ( Base `  ( Ms  A ) ) ) )  ->  ( a
( le `  ( Ms  A ) ) b  ->  ( a ( +g  `  ( Ms  A ) ) c ) ( le `  ( Ms  A ) ) ( b ( +g  `  ( Ms  A ) ) c ) ) )
5352ralrimivvva 2972 . 2  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  A. a  e.  (
Base `  ( Ms  A
) ) A. b  e.  ( Base `  ( Ms  A ) ) A. c  e.  ( Base `  ( Ms  A ) ) ( a ( le `  ( Ms  A ) ) b  ->  ( a ( +g  `  ( Ms  A ) ) c ) ( le `  ( Ms  A ) ) ( b ( +g  `  ( Ms  A ) ) c ) ) )
54 eqid 2622 . . 3  |-  ( +g  `  ( Ms  A ) )  =  ( +g  `  ( Ms  A ) )
55 eqid 2622 . . 3  |-  ( le
`  ( Ms  A ) )  =  ( le
`  ( Ms  A ) )
5610, 54, 55isomnd 29701 . 2  |-  ( ( Ms  A )  e. oMnd  <->  ( ( Ms  A )  e.  Mnd  /\  ( Ms  A )  e. Toset  /\  A. a  e.  ( Base `  ( Ms  A ) ) A. b  e.  ( Base `  ( Ms  A ) ) A. c  e.  ( Base `  ( Ms  A ) ) ( a ( le `  ( Ms  A ) ) b  ->  ( a ( +g  `  ( Ms  A ) ) c ) ( le `  ( Ms  A ) ) ( b ( +g  `  ( Ms  A ) ) c ) ) ) )
571, 19, 53, 56syl3anbrc 1246 1  |-  ( ( M  e. oMnd  /\  ( Ms  A )  e.  Mnd )  ->  ( Ms  A )  e. oMnd )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   ↾s cress 15858   +g cplusg 15941   lecple 15948   0gc0g 16100  Tosetctos 17033   Mndcmnd 17294  oMndcomnd 29697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-ple 15961  df-0g 16102  df-poset 16946  df-toset 17034  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-omnd 29699
This theorem is referenced by:  suborng  29815  nn0omnd  29841
  Copyright terms: Public domain W3C validator