MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttglem Structured version   Visualization version   Unicode version

Theorem ttglem 25756
Description: Lemma for ttgbas 25757 and ttgvsca 25760. (Contributed by Thierry Arnoux, 15-Apr-2019.)
Hypotheses
Ref Expression
ttgval.n  |-  G  =  (toTG `  H )
ttglem.2  |-  E  = Slot 
N
ttglem.3  |-  N  e.  NN
ttglem.4  |-  N  < ; 1 6
Assertion
Ref Expression
ttglem  |-  ( E `
 H )  =  ( E `  G
)

Proof of Theorem ttglem
Dummy variables  k  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . . 6  |-  G  =  (toTG `  H )
2 eqid 2622 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
3 eqid 2622 . . . . . 6  |-  ( -g `  H )  =  (
-g `  H )
4 eqid 2622 . . . . . 6  |-  ( .s
`  H )  =  ( .s `  H
)
5 eqid 2622 . . . . . 6  |-  (Itv `  G )  =  (Itv
`  G )
61, 2, 3, 4, 5ttgval 25755 . . . . 5  |-  ( H  e.  _V  ->  ( G  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  ( Base `  H
) ,  y  e.  ( Base `  H
)  |->  { z  e.  ( Base `  H
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  H )
x )  =  ( k ( .s `  H ) ( y ( -g `  H
) x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  ( z  e.  ( x (Itv `  G )
y )  \/  x  e.  ( z (Itv `  G ) y )  \/  y  e.  ( x (Itv `  G
) z ) ) } ) >. )  /\  (Itv `  G )  =  ( x  e.  ( Base `  H
) ,  y  e.  ( Base `  H
)  |->  { z  e.  ( Base `  H
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  H )
x )  =  ( k ( .s `  H ) ( y ( -g `  H
) x ) ) } ) ) )
76simpld 475 . . . 4  |-  ( H  e.  _V  ->  G  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  E. k  e.  ( 0 [,] 1 ) ( z ( -g `  H
) x )  =  ( k ( .s
`  H ) ( y ( -g `  H
) x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  ( z  e.  ( x (Itv `  G )
y )  \/  x  e.  ( z (Itv `  G ) y )  \/  y  e.  ( x (Itv `  G
) z ) ) } ) >. )
)
87fveq2d 6195 . . 3  |-  ( H  e.  _V  ->  ( E `  G )  =  ( E `  ( ( H sSet  <. (Itv
`  ndx ) ,  ( x  e.  ( Base `  H ) ,  y  e.  ( Base `  H
)  |->  { z  e.  ( Base `  H
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  H )
x )  =  ( k ( .s `  H ) ( y ( -g `  H
) x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  ( z  e.  ( x (Itv `  G )
y )  \/  x  e.  ( z (Itv `  G ) y )  \/  y  e.  ( x (Itv `  G
) z ) ) } ) >. )
) )
9 ttglem.2 . . . . . 6  |-  E  = Slot 
N
10 ttglem.3 . . . . . 6  |-  N  e.  NN
119, 10ndxid 15883 . . . . 5  |-  E  = Slot  ( E `  ndx )
1210nnrei 11029 . . . . . . 7  |-  N  e.  RR
13 ttglem.4 . . . . . . 7  |-  N  < ; 1 6
1412, 13ltneii 10150 . . . . . 6  |-  N  =/= ; 1 6
159, 10ndxarg 15882 . . . . . . 7  |-  ( E `
 ndx )  =  N
16 itvndx 25339 . . . . . . 7  |-  (Itv `  ndx )  = ; 1 6
1715, 16neeq12i 2860 . . . . . 6  |-  ( ( E `  ndx )  =/=  (Itv `  ndx )  <->  N  =/= ; 1 6 )
1814, 17mpbir 221 . . . . 5  |-  ( E `
 ndx )  =/=  (Itv `  ndx )
1911, 18setsnid 15915 . . . 4  |-  ( E `
 H )  =  ( E `  ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  ( Base `  H
) ,  y  e.  ( Base `  H
)  |->  { z  e.  ( Base `  H
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  H )
x )  =  ( k ( .s `  H ) ( y ( -g `  H
) x ) ) } ) >. )
)
20 1nn0 11308 . . . . . . . . 9  |-  1  e.  NN0
21 6nn0 11313 . . . . . . . . 9  |-  6  e.  NN0
22 7nn 11190 . . . . . . . . 9  |-  7  e.  NN
23 6lt7 11209 . . . . . . . . 9  |-  6  <  7
2420, 21, 22, 23declt 11530 . . . . . . . 8  |- ; 1 6  < ; 1 7
25 6nn 11189 . . . . . . . . . . 11  |-  6  e.  NN
2620, 25decnncl 11518 . . . . . . . . . 10  |- ; 1 6  e.  NN
2726nnrei 11029 . . . . . . . . 9  |- ; 1 6  e.  RR
2820, 22decnncl 11518 . . . . . . . . . 10  |- ; 1 7  e.  NN
2928nnrei 11029 . . . . . . . . 9  |- ; 1 7  e.  RR
3012, 27, 29lttri 10163 . . . . . . . 8  |-  ( ( N  < ; 1 6  /\ ; 1 6  < ; 1 7 )  ->  N  < ; 1 7 )
3113, 24, 30mp2an 708 . . . . . . 7  |-  N  < ; 1 7
3212, 31ltneii 10150 . . . . . 6  |-  N  =/= ; 1 7
33 lngndx 25340 . . . . . . 7  |-  (LineG `  ndx )  = ; 1 7
3415, 33neeq12i 2860 . . . . . 6  |-  ( ( E `  ndx )  =/=  (LineG `  ndx )  <->  N  =/= ; 1 7 )
3532, 34mpbir 221 . . . . 5  |-  ( E `
 ndx )  =/=  (LineG `  ndx )
3611, 35setsnid 15915 . . . 4  |-  ( E `
 ( H sSet  <. (Itv
`  ndx ) ,  ( x  e.  ( Base `  H ) ,  y  e.  ( Base `  H
)  |->  { z  e.  ( Base `  H
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  H )
x )  =  ( k ( .s `  H ) ( y ( -g `  H
) x ) ) } ) >. )
)  =  ( E `
 ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  E. k  e.  ( 0 [,] 1 ) ( z ( -g `  H
) x )  =  ( k ( .s
`  H ) ( y ( -g `  H
) x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  ( z  e.  ( x (Itv `  G )
y )  \/  x  e.  ( z (Itv `  G ) y )  \/  y  e.  ( x (Itv `  G
) z ) ) } ) >. )
)
3719, 36eqtri 2644 . . 3  |-  ( E `
 H )  =  ( E `  (
( H sSet  <. (Itv `  ndx ) ,  ( x  e.  ( Base `  H
) ,  y  e.  ( Base `  H
)  |->  { z  e.  ( Base `  H
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  H )
x )  =  ( k ( .s `  H ) ( y ( -g `  H
) x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  (
Base `  H ) ,  y  e.  ( Base `  H )  |->  { z  e.  ( Base `  H )  |  ( z  e.  ( x (Itv `  G )
y )  \/  x  e.  ( z (Itv `  G ) y )  \/  y  e.  ( x (Itv `  G
) z ) ) } ) >. )
)
388, 37syl6reqr 2675 . 2  |-  ( H  e.  _V  ->  ( E `  H )  =  ( E `  G ) )
399str0 15911 . . 3  |-  (/)  =  ( E `  (/) )
40 fvprc 6185 . . 3  |-  ( -.  H  e.  _V  ->  ( E `  H )  =  (/) )
41 fvprc 6185 . . . . 5  |-  ( -.  H  e.  _V  ->  (toTG `  H )  =  (/) )
421, 41syl5eq 2668 . . . 4  |-  ( -.  H  e.  _V  ->  G  =  (/) )
4342fveq2d 6195 . . 3  |-  ( -.  H  e.  _V  ->  ( E `  G )  =  ( E `  (/) ) )
4439, 40, 433eqtr4a 2682 . 2  |-  ( -.  H  e.  _V  ->  ( E `  H )  =  ( E `  G ) )
4538, 44pm2.61i 176 1  |-  ( E `
 H )  =  ( E `  G
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    < clt 10074   NNcn 11020   6c6 11074   7c7 11075  ;cdc 11493   [,]cicc 12178   ndxcnx 15854   sSet csts 15855  Slot cslot 15856   Basecbs 15857   .scvsca 15945   -gcsg 17424  Itvcitv 25335  LineGclng 25336  toTGcttg 25753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-dec 11494  df-ndx 15860  df-slot 15861  df-sets 15864  df-itv 25337  df-lng 25338  df-ttg 25754
This theorem is referenced by:  ttgbas  25757  ttgplusg  25758  ttgvsca  25760  ttgds  25761
  Copyright terms: Public domain W3C validator