MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr3cyclex Structured version   Visualization version   Unicode version

Theorem uhgr3cyclex 27042
Description: If there are three different vertices in a hypergraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v  |-  V  =  (Vtx `  G )
uhgr3cyclex.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
uhgr3cyclex  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  /\  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
)  ->  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) )
Distinct variable groups:    A, f, p    B, f, p    C, f, p    f, G, p
Allowed substitution hints:    E( f, p)    V( f, p)

Proof of Theorem uhgr3cyclex
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uhgr3cyclex.e . . . . . . 7  |-  E  =  (Edg `  G )
21eleq2i 2693 . . . . . 6  |-  ( { A ,  B }  e.  E  <->  { A ,  B }  e.  (Edg `  G
) )
3 eqid 2622 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
43uhgredgiedgb 26021 . . . . . 6  |-  ( G  e. UHGraph  ->  ( { A ,  B }  e.  (Edg
`  G )  <->  E. i  e.  dom  (iEdg `  G
) { A ,  B }  =  (
(iEdg `  G ) `  i ) ) )
52, 4syl5bb 272 . . . . 5  |-  ( G  e. UHGraph  ->  ( { A ,  B }  e.  E  <->  E. i  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  i ) ) )
61eleq2i 2693 . . . . . 6  |-  ( { B ,  C }  e.  E  <->  { B ,  C }  e.  (Edg `  G
) )
73uhgredgiedgb 26021 . . . . . 6  |-  ( G  e. UHGraph  ->  ( { B ,  C }  e.  (Edg
`  G )  <->  E. j  e.  dom  (iEdg `  G
) { B ,  C }  =  (
(iEdg `  G ) `  j ) ) )
86, 7syl5bb 272 . . . . 5  |-  ( G  e. UHGraph  ->  ( { B ,  C }  e.  E  <->  E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j ) ) )
91eleq2i 2693 . . . . . 6  |-  ( { C ,  A }  e.  E  <->  { C ,  A }  e.  (Edg `  G
) )
103uhgredgiedgb 26021 . . . . . 6  |-  ( G  e. UHGraph  ->  ( { C ,  A }  e.  (Edg
`  G )  <->  E. k  e.  dom  (iEdg `  G
) { C ,  A }  =  (
(iEdg `  G ) `  k ) ) )
119, 10syl5bb 272 . . . . 5  |-  ( G  e. UHGraph  ->  ( { C ,  A }  e.  E  <->  E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k ) ) )
125, 8, 113anbi123d 1399 . . . 4  |-  ( G  e. UHGraph  ->  ( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )  <->  ( E. i  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  i
)  /\  E. j  e.  dom  (iEdg `  G
) { B ,  C }  =  (
(iEdg `  G ) `  j )  /\  E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k ) ) ) )
1312adantr 481 . . 3  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  -> 
( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )  <->  ( E. i  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  i )  /\  E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j )  /\  E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k ) ) ) )
14 eqid 2622 . . . . . . . . . . . . . 14  |-  <" A B C A ">  =  <" A B C A ">
15 eqid 2622 . . . . . . . . . . . . . 14  |-  <" i
j k ">  =  <" i j k ">
16 3simpa 1058 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  e.  V  /\  B  e.  V
) )
17 pm3.22 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  V  /\  C  e.  V )  ->  ( C  e.  V  /\  A  e.  V
) )
18173adant2 1080 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( C  e.  V  /\  A  e.  V
) )
1916, 18jca 554 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  A  e.  V )
) )
2019adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( A  e.  V  /\  B  e.  V
)  /\  ( C  e.  V  /\  A  e.  V ) ) )
2120ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  ( ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  A  e.  V )
) )
22 3simpa 1058 . . . . . . . . . . . . . . . . 17  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( A  =/=  B  /\  A  =/=  C ) )
23 necom 2847 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  =/=  B  <->  B  =/=  A )
2423biimpi 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  =/=  B  ->  B  =/=  A )
2524anim1i 592 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( B  =/=  A  /\  B  =/=  C
) )
2625ancomd 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =/=  B  /\  B  =/=  C )  -> 
( B  =/=  C  /\  B  =/=  A
) )
27263adant2 1080 . . . . . . . . . . . . . . . . 17  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( B  =/=  C  /\  B  =/=  A ) )
28 necom 2847 . . . . . . . . . . . . . . . . . . 19  |-  ( A  =/=  C  <->  C  =/=  A )
2928biimpi 206 . . . . . . . . . . . . . . . . . 18  |-  ( A  =/=  C  ->  C  =/=  A )
30293ad2ant2 1083 . . . . . . . . . . . . . . . . 17  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  C  =/=  A )
3122, 27, 303jca 1242 . . . . . . . . . . . . . . . 16  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  (
( A  =/=  B  /\  A  =/=  C
)  /\  ( B  =/=  C  /\  B  =/= 
A )  /\  C  =/=  A ) )
3231adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( A  =/=  B  /\  A  =/=  C
)  /\  ( B  =/=  C  /\  B  =/= 
A )  /\  C  =/=  A ) )
3332ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  ( ( A  =/=  B  /\  A  =/=  C )  /\  ( B  =/=  C  /\  B  =/=  A )  /\  C  =/=  A ) )
34 eqimss 3657 . . . . . . . . . . . . . . . . . 18  |-  ( { A ,  B }  =  ( (iEdg `  G ) `  i
)  ->  { A ,  B }  C_  (
(iEdg `  G ) `  i ) )
3534adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  ->  { A ,  B }  C_  (
(iEdg `  G ) `  i ) )
36353ad2ant3 1084 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  ->  { A ,  B }  C_  ( (iEdg `  G
) `  i )
)
37 eqimss 3657 . . . . . . . . . . . . . . . . . 18  |-  ( { B ,  C }  =  ( (iEdg `  G ) `  j
)  ->  { B ,  C }  C_  (
(iEdg `  G ) `  j ) )
3837adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  ->  { B ,  C }  C_  (
(iEdg `  G ) `  j ) )
39383ad2ant1 1082 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  ->  { B ,  C }  C_  ( (iEdg `  G
) `  j )
)
40 eqimss 3657 . . . . . . . . . . . . . . . . . 18  |-  ( { C ,  A }  =  ( (iEdg `  G ) `  k
)  ->  { C ,  A }  C_  (
(iEdg `  G ) `  k ) )
4140adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  ->  { C ,  A }  C_  (
(iEdg `  G ) `  k ) )
42413ad2ant2 1083 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  ->  { C ,  A }  C_  ( (iEdg `  G
) `  k )
)
4336, 39, 423jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  -> 
( { A ,  B }  C_  ( (iEdg `  G ) `  i
)  /\  { B ,  C }  C_  (
(iEdg `  G ) `  j )  /\  { C ,  A }  C_  ( (iEdg `  G
) `  k )
) )
4443adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  ( { A ,  B }  C_  (
(iEdg `  G ) `  i )  /\  { B ,  C }  C_  ( (iEdg `  G
) `  j )  /\  { C ,  A }  C_  ( (iEdg `  G ) `  k
) ) )
45 uhgr3cyclex.v . . . . . . . . . . . . . 14  |-  V  =  (Vtx `  G )
46 simp3 1063 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  C  e.  V )
47 simp1 1061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  A  e.  V )
4846, 47jca 554 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( C  e.  V  /\  A  e.  V
) )
4948, 30anim12i 590 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( C  e.  V  /\  A  e.  V
)  /\  C  =/=  A ) )
5049adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  -> 
( ( C  e.  V  /\  A  e.  V )  /\  C  =/=  A ) )
51 pm3.22 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  -> 
( ( i  e. 
dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  /\  (
j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) ) ) )
52513adant2 1080 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  -> 
( ( i  e. 
dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  /\  (
j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) ) ) )
5345, 1, 3uhgr3cyclexlem 27041 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( C  e.  V  /\  A  e.  V )  /\  C  =/=  A )  /\  (
( i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  /\  (
j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) ) ) )  ->  i  =/=  j
)
5450, 52, 53syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  i  =/=  j
)
55 3simpc 1060 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( B  e.  V  /\  C  e.  V
) )
56 simp3 1063 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  B  =/=  C )
5755, 56anim12i 590 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( B  e.  V  /\  C  e.  V
)  /\  B  =/=  C ) )
5857adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  -> 
( ( B  e.  V  /\  C  e.  V )  /\  B  =/=  C ) )
59 3simpc 1060 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  -> 
( ( k  e. 
dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )
6045, 1, 3uhgr3cyclexlem 27041 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  V  /\  C  e.  V )  /\  B  =/=  C )  /\  (
( k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  k  =/=  i
)
6160necomd 2849 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  C  e.  V )  /\  B  =/=  C )  /\  (
( k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  i  =/=  k
)
6258, 59, 61syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  i  =/=  k
)
6345, 1, 3uhgr3cyclexlem 27041 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( A  e.  V  /\  B  e.  V )  /\  A  =/=  B )  /\  (
( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) ) )  ->  j  =/=  k
)
6463exp31 630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A  =/=  B  ->  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
j  =/=  k ) ) )
65643adant3 1081 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( A  =/=  B  ->  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
j  =/=  k ) ) )
6665com12 32 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  =/=  B  ->  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  ->  ( (
( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
j  =/=  k ) ) )
67663ad2ant1 1082 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  ->  ( (
( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
j  =/=  k ) ) )
6867impcom 446 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  ->  (
( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
j  =/=  k ) )
6968adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  -> 
( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
j  =/=  k ) )
7069com12 32 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) ) )  -> 
( ( G  e. UHGraph  /\  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) ) )  ->  j  =/=  k
) )
71703adant3 1081 . . . . . . . . . . . . . . . 16  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  -> 
( ( G  e. UHGraph  /\  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) ) )  ->  j  =/=  k
) )
7271impcom 446 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  j  =/=  k
)
7354, 62, 723jca 1242 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  ( i  =/=  j  /\  i  =/=  k  /\  j  =/=  k ) )
74 eqidd 2623 . . . . . . . . . . . . . 14  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  A  =  A )
7514, 15, 21, 33, 44, 45, 3, 73, 743cyclpd 27039 . . . . . . . . . . . . 13  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  ( <" i
j k "> (Cycles `  G ) <" A B C A ">  /\  ( # `
 <" i j k "> )  =  3  /\  ( <" A B C A "> `  0
)  =  A ) )
76 s3cli 13626 . . . . . . . . . . . . . . 15  |-  <" i
j k ">  e. Word  _V
7776elexi 3213 . . . . . . . . . . . . . 14  |-  <" i
j k ">  e.  _V
78 s4cli 13627 . . . . . . . . . . . . . . 15  |-  <" A B C A ">  e. Word  _V
7978elexi 3213 . . . . . . . . . . . . . 14  |-  <" A B C A ">  e.  _V
80 breq12 4658 . . . . . . . . . . . . . . 15  |-  ( ( f  =  <" i
j k ">  /\  p  =  <" A B C A "> )  ->  ( f (Cycles `  G ) p  <->  <" i
j k "> (Cycles `  G ) <" A B C A "> )
)
81 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( f  =  <" i j k ">  ->  (
# `  f )  =  ( # `  <" i j k "> ) )
8281eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( f  =  <" i j k ">  ->  ( ( # `  f
)  =  3  <->  ( # `
 <" i j k "> )  =  3 ) )
8382adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( f  =  <" i
j k ">  /\  p  =  <" A B C A "> )  ->  ( ( # `  f )  =  3  <-> 
( # `  <" i
j k "> )  =  3 ) )
84 fveq1 6190 . . . . . . . . . . . . . . . . 17  |-  ( p  =  <" A B C A ">  ->  ( p `  0
)  =  ( <" A B C A "> `  0
) )
8584eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( p  =  <" A B C A ">  ->  ( ( p ` 
0 )  =  A  <-> 
( <" A B C A "> `  0 )  =  A ) )
8685adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( f  =  <" i
j k ">  /\  p  =  <" A B C A "> )  ->  ( ( p `
 0 )  =  A  <->  ( <" A B C A "> `  0 )  =  A ) )
8780, 83, 863anbi123d 1399 . . . . . . . . . . . . . 14  |-  ( ( f  =  <" i
j k ">  /\  p  =  <" A B C A "> )  ->  ( ( f (Cycles `  G )
p  /\  ( # `  f
)  =  3  /\  ( p `  0
)  =  A )  <-> 
( <" i j k "> (Cycles `  G ) <" A B C A ">  /\  ( # `  <" i j k "> )  =  3  /\  ( <" A B C A "> `  0 )  =  A ) ) )
8877, 79, 87spc2ev 3301 . . . . . . . . . . . . 13  |-  ( (
<" i j k "> (Cycles `  G ) <" A B C A ">  /\  ( # `  <" i j k "> )  =  3  /\  ( <" A B C A "> `  0 )  =  A )  ->  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) )
8975, 88syl 17 . . . . . . . . . . . 12  |-  ( ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  /\  ( ( j  e. 
dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) ) )  ->  E. f E. p
( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) )
9089expcom 451 . . . . . . . . . . 11  |-  ( ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  /\  (
k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  /\  (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) ) )  -> 
( ( G  e. UHGraph  /\  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) ) )  ->  E. f E. p
( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) ) )
91903exp 1264 . . . . . . . . . 10  |-  ( ( j  e.  dom  (iEdg `  G )  /\  { B ,  C }  =  ( (iEdg `  G ) `  j
) )  ->  (
( k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  ->  (
( i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  ->  (
( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) ) ) )
9291rexlimiva 3028 . . . . . . . . 9  |-  ( E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j )  ->  (
( k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  ->  (
( i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  ->  (
( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) ) ) )
9392com12 32 . . . . . . . 8  |-  ( ( k  e.  dom  (iEdg `  G )  /\  { C ,  A }  =  ( (iEdg `  G ) `  k
) )  ->  ( E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j
)  ->  ( (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  ->  (
( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) ) ) )
9493rexlimiva 3028 . . . . . . 7  |-  ( E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k )  ->  ( E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j
)  ->  ( (
i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  ->  (
( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) ) ) )
9594com13 88 . . . . . 6  |-  ( ( i  e.  dom  (iEdg `  G )  /\  { A ,  B }  =  ( (iEdg `  G ) `  i
) )  ->  ( E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j
)  ->  ( E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k )  ->  (
( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) ) ) )
9695rexlimiva 3028 . . . . 5  |-  ( E. i  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  i )  ->  ( E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j
)  ->  ( E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k )  ->  (
( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) ) ) )
97963imp 1256 . . . 4  |-  ( ( E. i  e.  dom  (iEdg `  G ) { A ,  B }  =  ( (iEdg `  G ) `  i
)  /\  E. j  e.  dom  (iEdg `  G
) { B ,  C }  =  (
(iEdg `  G ) `  j )  /\  E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k ) )  -> 
( ( G  e. UHGraph  /\  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) ) )  ->  E. f E. p
( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) ) )
9897com12 32 . . 3  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  -> 
( ( E. i  e.  dom  (iEdg `  G
) { A ,  B }  =  (
(iEdg `  G ) `  i )  /\  E. j  e.  dom  (iEdg `  G ) { B ,  C }  =  ( (iEdg `  G ) `  j )  /\  E. k  e.  dom  (iEdg `  G ) { C ,  A }  =  ( (iEdg `  G ) `  k ) )  ->  E. f E. p ( f (Cycles `  G
) p  /\  ( # `
 f )  =  3  /\  ( p `
 0 )  =  A ) ) )
9913, 98sylbid 230 . 2  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) ) )  -> 
( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )  ->  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) ) )
100993impia 1261 1  |-  ( ( G  e. UHGraph  /\  (
( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( A  =/=  B  /\  A  =/= 
C  /\  B  =/=  C ) )  /\  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E  /\  { C ,  A }  e.  E )
)  ->  E. f E. p ( f (Cycles `  G ) p  /\  ( # `  f )  =  3  /\  (
p `  0 )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {cpr 4179   class class class wbr 4653   dom cdm 5114   ` cfv 5888   0cc0 9936   3c3 11071   #chash 13117  Word cword 13291   <"cs3 13587   <"cs4 13588  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951  Cyclesccycls 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-s4 13595  df-edg 25940  df-uhgr 25953  df-wlks 26495  df-trls 26589  df-pths 26612  df-cycls 26682
This theorem is referenced by:  umgr3cyclex  27043
  Copyright terms: Public domain W3C validator