MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2a Structured version   Visualization version   Unicode version

Theorem uniioombllem2a 23350
Description: Lemma for uniioombl 23357. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
Assertion
Ref Expression
uniioombllem2a  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,) )
Distinct variable groups:    x, z, F    x, G, z    x, A, z    x, C, z   
x, J, z    ph, x, z    x, T, z
Allowed substitution hints:    S( x, z)    E( x, z)

Proof of Theorem uniioombllem2a
StepHypRef Expression
1 inss2 3834 . . . . . . . 8  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
2 uniioombl.1 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
32adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
43ffvelrnda 6359 . . . . . . . 8  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( F `  z )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
51, 4sseldi 3601 . . . . . . 7  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( F `  z )  e.  ( RR  X.  RR ) )
6 1st2nd2 7205 . . . . . . 7  |-  ( ( F `  z )  e.  ( RR  X.  RR )  ->  ( F `
 z )  = 
<. ( 1st `  ( F `  z )
) ,  ( 2nd `  ( F `  z
) ) >. )
75, 6syl 17 . . . . . 6  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( F `  z )  =  <. ( 1st `  ( F `  z )
) ,  ( 2nd `  ( F `  z
) ) >. )
87fveq2d 6195 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  <. ( 1st `  ( F `
 z ) ) ,  ( 2nd `  ( F `  z )
) >. ) )
9 df-ov 6653 . . . . 5  |-  ( ( 1st `  ( F `
 z ) ) (,) ( 2nd `  ( F `  z )
) )  =  ( (,) `  <. ( 1st `  ( F `  z ) ) ,  ( 2nd `  ( F `  z )
) >. )
108, 9syl6eqr 2674 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( F `  z ) )  =  ( ( 1st `  ( F `  z )
) (,) ( 2nd `  ( F `  z
) ) ) )
11 uniioombl.g . . . . . . . . . 10  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
1211ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
131, 12sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  e.  ( RR  X.  RR ) )
14 1st2nd2 7205 . . . . . . . 8  |-  ( ( G `  J )  e.  ( RR  X.  RR )  ->  ( G `
 J )  = 
<. ( 1st `  ( G `  J )
) ,  ( 2nd `  ( G `  J
) ) >. )
1513, 14syl 17 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  = 
<. ( 1st `  ( G `  J )
) ,  ( 2nd `  ( G `  J
) ) >. )
1615fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  =  ( (,) `  <. ( 1st `  ( G `  J ) ) ,  ( 2nd `  ( G `  J )
) >. ) )
17 df-ov 6653 . . . . . 6  |-  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) )  =  ( (,) `  <. ( 1st `  ( G `  J ) ) ,  ( 2nd `  ( G `  J )
) >. )
1816, 17syl6eqr 2674 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  =  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) )
1918adantr 481 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( G `  J ) )  =  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) )
2010, 19ineq12d 3815 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  =  ( ( ( 1st `  ( F `  z
) ) (,) ( 2nd `  ( F `  z ) ) )  i^i  ( ( 1st `  ( G `  J
) ) (,) ( 2nd `  ( G `  J ) ) ) ) )
21 ovolfcl 23235 . . . . . . 7  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  z  e.  NN )  ->  (
( 1st `  ( F `  z )
)  e.  RR  /\  ( 2nd `  ( F `
 z ) )  e.  RR  /\  ( 1st `  ( F `  z ) )  <_ 
( 2nd `  ( F `  z )
) ) )
223, 21sylan 488 . . . . . 6  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( 1st `  ( F `  z )
)  e.  RR  /\  ( 2nd `  ( F `
 z ) )  e.  RR  /\  ( 1st `  ( F `  z ) )  <_ 
( 2nd `  ( F `  z )
) ) )
2322simp1d 1073 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( 1st `  ( F `  z ) )  e.  RR )
2423rexrd 10089 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( 1st `  ( F `  z ) )  e. 
RR* )
2522simp2d 1074 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( 2nd `  ( F `  z ) )  e.  RR )
2625rexrd 10089 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( 2nd `  ( F `  z ) )  e. 
RR* )
27 ovolfcl 23235 . . . . . . . 8  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  J  e.  NN )  ->  (
( 1st `  ( G `  J )
)  e.  RR  /\  ( 2nd `  ( G `
 J ) )  e.  RR  /\  ( 1st `  ( G `  J ) )  <_ 
( 2nd `  ( G `  J )
) ) )
2811, 27sylan 488 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( 1st `  ( G `
 J ) )  e.  RR  /\  ( 2nd `  ( G `  J ) )  e.  RR  /\  ( 1st `  ( G `  J
) )  <_  ( 2nd `  ( G `  J ) ) ) )
2928simp1d 1073 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( 1st `  ( G `  J
) )  e.  RR )
3029rexrd 10089 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( 1st `  ( G `  J
) )  e.  RR* )
3130adantr 481 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( 1st `  ( G `  J ) )  e. 
RR* )
3228simp2d 1074 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( 2nd `  ( G `  J
) )  e.  RR )
3332rexrd 10089 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( 2nd `  ( G `  J
) )  e.  RR* )
3433adantr 481 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( 2nd `  ( G `  J ) )  e. 
RR* )
35 iooin 12209 . . . 4  |-  ( ( ( ( 1st `  ( F `  z )
)  e.  RR*  /\  ( 2nd `  ( F `  z ) )  e. 
RR* )  /\  (
( 1st `  ( G `  J )
)  e.  RR*  /\  ( 2nd `  ( G `  J ) )  e. 
RR* ) )  -> 
( ( ( 1st `  ( F `  z
) ) (,) ( 2nd `  ( F `  z ) ) )  i^i  ( ( 1st `  ( G `  J
) ) (,) ( 2nd `  ( G `  J ) ) ) )  =  ( if ( ( 1st `  ( F `  z )
)  <_  ( 1st `  ( G `  J
) ) ,  ( 1st `  ( G `
 J ) ) ,  ( 1st `  ( F `  z )
) ) (,) if ( ( 2nd `  ( F `  z )
)  <_  ( 2nd `  ( G `  J
) ) ,  ( 2nd `  ( F `
 z ) ) ,  ( 2nd `  ( G `  J )
) ) ) )
3624, 26, 31, 34, 35syl22anc 1327 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( ( 1st `  ( F `  z )
) (,) ( 2nd `  ( F `  z
) ) )  i^i  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) )  =  ( if ( ( 1st `  ( F `  z )
)  <_  ( 1st `  ( G `  J
) ) ,  ( 1st `  ( G `
 J ) ) ,  ( 1st `  ( F `  z )
) ) (,) if ( ( 2nd `  ( F `  z )
)  <_  ( 2nd `  ( G `  J
) ) ,  ( 2nd `  ( F `
 z ) ) ,  ( 2nd `  ( G `  J )
) ) ) )
3720, 36eqtrd 2656 . 2  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  =  ( if ( ( 1st `  ( F `
 z ) )  <_  ( 1st `  ( G `  J )
) ,  ( 1st `  ( G `  J
) ) ,  ( 1st `  ( F `
 z ) ) ) (,) if ( ( 2nd `  ( F `  z )
)  <_  ( 2nd `  ( G `  J
) ) ,  ( 2nd `  ( F `
 z ) ) ,  ( 2nd `  ( G `  J )
) ) ) )
38 ioorebas 12275 . 2  |-  ( if ( ( 1st `  ( F `  z )
)  <_  ( 1st `  ( G `  J
) ) ,  ( 1st `  ( G `
 J ) ) ,  ( 1st `  ( F `  z )
) ) (,) if ( ( 2nd `  ( F `  z )
)  <_  ( 2nd `  ( G `  J
) ) ,  ( 2nd `  ( F `
 z ) ) ,  ( 2nd `  ( G `  J )
) ) )  e. 
ran  (,)
3937, 38syl6eqel 2709 1  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   ifcif 4086   <.cop 4183   U.cuni 4436  Disj wdisj 4620   class class class wbr 4653    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   RR+crp 11832   (,)cioo 12175    seqcseq 12801   abscabs 13974   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179
This theorem is referenced by:  uniioombllem2  23351
  Copyright terms: Public domain W3C validator