MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem2 Structured version   Visualization version   Unicode version

Theorem uniioombllem2 23351
Description: Lemma for uniioombl 23357. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol* `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
uniioombllem2.h  |-  H  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )
uniioombllem2.k  |-  K  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
Assertion
Ref Expression
uniioombllem2  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( vol*  o.  H
) )  ~~>  ( vol* `  ( ( (,) `  ( G `  J ) )  i^i 
A ) ) )
Distinct variable groups:    x, z, F    x, G, z    x, K, z    x, A, z   
x, C, z    x, H, z    x, J, z    ph, x, z    x, T, z
Allowed substitution hints:    S( x, z)    E( x, z)

Proof of Theorem uniioombllem2
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
2 eqid 2622 . . 3  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )
3 1zzd 11408 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  1  e.  ZZ )
4 eqidd 2623 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  =  ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
) )
5 uniioombl.1 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
6 uniioombl.2 . . . . . . . . . . 11  |-  ( ph  -> Disj  x  e.  NN  ( (,) `  ( F `  x ) ) )
7 uniioombl.3 . . . . . . . . . . 11  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
8 uniioombl.a . . . . . . . . . . 11  |-  A  = 
U. ran  ( (,)  o.  F )
9 uniioombl.e . . . . . . . . . . 11  |-  ( ph  ->  ( vol* `  E )  e.  RR )
10 uniioombl.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
11 uniioombl.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
12 uniioombl.s . . . . . . . . . . 11  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
13 uniioombl.t . . . . . . . . . . 11  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
14 uniioombl.v . . . . . . . . . . 11  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
155, 6, 7, 8, 9, 10, 11, 12, 13, 14uniioombllem2a 23350 . . . . . . . . . 10  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,) )
16 inss2 3834 . . . . . . . . . . . . 13  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  C_  ( (,) `  ( G `  J ) )
1716a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  C_  ( (,) `  ( G `  J ) ) )
18 inss2 3834 . . . . . . . . . . . . . . . . 17  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
1911ffvelrnda 6359 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
2018, 19sseldi 3601 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  e.  ( RR  X.  RR ) )
21 1st2nd2 7205 . . . . . . . . . . . . . . . 16  |-  ( ( G `  J )  e.  ( RR  X.  RR )  ->  ( G `
 J )  = 
<. ( 1st `  ( G `  J )
) ,  ( 2nd `  ( G `  J
) ) >. )
2220, 21syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  NN )  ->  ( G `
 J )  = 
<. ( 1st `  ( G `  J )
) ,  ( 2nd `  ( G `  J
) ) >. )
2322fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  =  ( (,) `  <. ( 1st `  ( G `  J ) ) ,  ( 2nd `  ( G `  J )
) >. ) )
24 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) )  =  ( (,) `  <. ( 1st `  ( G `  J ) ) ,  ( 2nd `  ( G `  J )
) >. )
2523, 24syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  =  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) )
26 ioossre 12235 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) )  C_  RR
2725, 26syl6eqss 3655 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) `  ( G `  J
) )  C_  RR )
2825fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( (,) `  ( G `  J
) ) )  =  ( vol* `  ( ( 1st `  ( G `  J )
) (,) ( 2nd `  ( G `  J
) ) ) ) )
29 ovolfcl 23235 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  J  e.  NN )  ->  (
( 1st `  ( G `  J )
)  e.  RR  /\  ( 2nd `  ( G `
 J ) )  e.  RR  /\  ( 1st `  ( G `  J ) )  <_ 
( 2nd `  ( G `  J )
) ) )
3011, 29sylan 488 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( 1st `  ( G `
 J ) )  e.  RR  /\  ( 2nd `  ( G `  J ) )  e.  RR  /\  ( 1st `  ( G `  J
) )  <_  ( 2nd `  ( G `  J ) ) ) )
31 ovolioo 23336 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  ( G `  J )
)  e.  RR  /\  ( 2nd `  ( G `
 J ) )  e.  RR  /\  ( 1st `  ( G `  J ) )  <_ 
( 2nd `  ( G `  J )
) )  ->  ( vol* `  ( ( 1st `  ( G `
 J ) ) (,) ( 2nd `  ( G `  J )
) ) )  =  ( ( 2nd `  ( G `  J )
)  -  ( 1st `  ( G `  J
) ) ) )
3230, 31syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( ( 1st `  ( G `  J ) ) (,) ( 2nd `  ( G `  J )
) ) )  =  ( ( 2nd `  ( G `  J )
)  -  ( 1st `  ( G `  J
) ) ) )
3328, 32eqtrd 2656 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( (,) `  ( G `  J
) ) )  =  ( ( 2nd `  ( G `  J )
)  -  ( 1st `  ( G `  J
) ) ) )
3430simp2d 1074 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( 2nd `  ( G `  J
) )  e.  RR )
3530simp1d 1073 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  J  e.  NN )  ->  ( 1st `  ( G `  J
) )  e.  RR )
3634, 35resubcld 10458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( 2nd `  ( G `
 J ) )  -  ( 1st `  ( G `  J )
) )  e.  RR )
3733, 36eqeltrd 2701 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( (,) `  ( G `  J
) ) )  e.  RR )
38 ovolsscl 23254 . . . . . . . . . . . 12  |-  ( ( ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  C_  ( (,) `  ( G `
 J ) )  /\  ( (,) `  ( G `  J )
)  C_  RR  /\  ( vol* `  ( (,) `  ( G `  J
) ) )  e.  RR )  ->  ( vol* `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )
3917, 27, 37, 38syl3anc 1326 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )
4039adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( vol* `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )
41 uniioombllem2.k . . . . . . . . . . 11  |-  K  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) ,  <. 0 ,  0
>. ,  <.inf ( x ,  RR* ,  <  ) ,  sup ( x , 
RR* ,  <  ) >.
) )
4241ioorcl 23345 . . . . . . . . . 10  |-  ( ( ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,)  /\  ( vol* `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  RR )  ->  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
4315, 40, 42syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
44 eqid 2622 . . . . . . . . 9  |-  ( z  e.  NN  |->  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) ) )  =  ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) )
4543, 44fmptd 6385 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( z  e.  NN  |->  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
46 uniioombllem2.h . . . . . . . . . . 11  |-  H  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )
4746a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  H  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
4841ioorf 23341 . . . . . . . . . . . 12  |-  K : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
)
4948a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  K : ran  (,) --> (  <_  i^i  ( RR*  X.  RR* )
) )
5049feqmptd 6249 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  K  =  ( y  e.  ran  (,)  |->  ( K `  y
) ) )
51 fveq2 6191 . . . . . . . . . 10  |-  ( y  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) )  ->  ( K `  y )  =  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) )
5215, 47, 50, 51fmptco 6396 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  ( K  o.  H )  =  ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) )
5352feq1d 6030 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  <->  ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
5445, 53mpbird 247 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
55 eqid 2622 . . . . . . . 8  |-  ( ( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( ( abs  o.  -  )  o.  ( K  o.  H ) )
5655ovolfsf 23240 . . . . . . 7  |-  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  ( K  o.  H
) ) : NN --> ( 0 [,) +oo ) )
5754, 56syl 17 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) : NN --> ( 0 [,) +oo ) )
5857ffvelrnda 6359 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  e.  ( 0 [,) +oo ) )
59 elrege0 12278 . . . . 5  |-  ( ( ( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  e.  ( 0 [,) +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
) ) )
6058, 59sylib 208 . . . 4  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) `  n
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  ( K  o.  H
) ) `  n
) ) )
6160simpld 475 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  (
( ( abs  o.  -  )  o.  ( K  o.  H )
) `  n )  e.  RR )
6260simprd 479 . . 3  |-  ( ( ( ph  /\  J  e.  NN )  /\  n  e.  NN )  ->  0  <_  ( ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) `  n
) )
6352fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( K  o.  H ) `
 z )  =  ( ( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) `  z ) )
64 fvex 6201 . . . . . . . . . . . . . . . 16  |-  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) )  e.  _V
6544fvmpt2 6291 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e. 
_V )  ->  (
( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) `
 z )  =  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
6664, 65mpan2 707 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  (
( z  e.  NN  |->  ( K `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) `
 z )  =  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
6763, 66sylan9eq 2676 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( K  o.  H
) `  z )  =  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
6867fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  z ) )  =  ( (,) `  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) ) ) )
6941ioorinv 23344 . . . . . . . . . . . . . 14  |-  ( ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
ran  (,)  ->  ( (,) `  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )
7015, 69syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )
7168, 70eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  z ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )
7271ralrimiva 2966 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  A. z  e.  NN  ( (,) `  (
( K  o.  H
) `  z )
)  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) ) )
73 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( K  o.  H
) `  z )  =  ( ( K  o.  H ) `  x ) )
7473fveq2d 6195 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  ( (,) `  ( ( K  o.  H ) `  z ) )  =  ( (,) `  (
( K  o.  H
) `  x )
) )
75 fveq2 6191 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
7675fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  x )
) )
7776ineq1d 3813 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  =  ( ( (,) `  ( F `  x )
)  i^i  ( (,) `  ( G `  J
) ) ) )
7874, 77eqeq12d 2637 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
( (,) `  (
( K  o.  H
) `  z )
)  =  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  <->  ( (,) `  ( ( K  o.  H ) `  x
) )  =  ( ( (,) `  ( F `  x )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
7978rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. z  e.  NN  ( (,) `  ( ( K  o.  H ) `
 z ) )  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) )  /\  x  e.  NN )  ->  ( (,) `  (
( K  o.  H
) `  x )
)  =  ( ( (,) `  ( F `
 x ) )  i^i  ( (,) `  ( G `  J )
) ) )
8072, 79sylan 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  J  e.  NN )  /\  x  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  x ) )  =  ( ( (,) `  ( F `  x )
)  i^i  ( (,) `  ( G `  J
) ) ) )
81 inss1 3833 . . . . . . . . . 10  |-  ( ( (,) `  ( F `
 x ) )  i^i  ( (,) `  ( G `  J )
) )  C_  ( (,) `  ( F `  x ) )
8280, 81syl6eqss 3655 . . . . . . . . 9  |-  ( ( ( ph  /\  J  e.  NN )  /\  x  e.  NN )  ->  ( (,) `  ( ( K  o.  H ) `  x ) )  C_  ( (,) `  ( F `
 x ) ) )
8382ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  A. x  e.  NN  ( (,) `  (
( K  o.  H
) `  x )
)  C_  ( (,) `  ( F `  x
) ) )
846adantr 481 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  -> Disj  x  e.  NN  ( (,) `  ( F `  x )
) )
85 disjss2 4623 . . . . . . . 8  |-  ( A. x  e.  NN  ( (,) `  ( ( K  o.  H ) `  x ) )  C_  ( (,) `  ( F `
 x ) )  ->  (Disj  x  e.  NN  ( (,) `  ( F `
 x ) )  -> Disj  x  e.  NN  ( (,) `  ( ( K  o.  H ) `  x ) ) ) )
8683, 84, 85sylc 65 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  -> Disj  x  e.  NN  ( (,) `  (
( K  o.  H
) `  x )
) )
8754, 86, 2uniioovol 23347 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  U. ran  ( (,)  o.  ( K  o.  H ) ) )  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )
8870mpteq2dva 4744 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  ( z  e.  NN  |->  ( (,) `  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) )  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) )
89 rexpssxrxp 10084 . . . . . . . . . . . . . 14  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
9018, 89sstri 3612 . . . . . . . . . . . . 13  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
9190, 43sseldi 3601 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  ( K `  ( ( (,) `  ( F `  z ) )  i^i  ( (,) `  ( G `  J )
) ) )  e.  ( RR*  X.  RR* )
)
92 ioof 12271 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
9392a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  (,) :
( RR*  X.  RR* ) --> ~P RR )
9493feqmptd 6249 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  (,)  =  ( y  e.  (
RR*  X.  RR* )  |->  ( (,) `  y ) ) )
95 fveq2 6191 . . . . . . . . . . . 12  |-  ( y  =  ( K `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) )  ->  ( (,) `  y
)  =  ( (,) `  ( K `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) ) ) ) )
9691, 52, 94, 95fmptco 6396 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) 
o.  ( K  o.  H ) )  =  ( z  e.  NN  |->  ( (,) `  ( K `
 ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) ) ) ) )
9788, 96, 473eqtr4d 2666 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) 
o.  ( K  o.  H ) )  =  H )
9897rneqd 5353 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  ran  ( (,)  o.  ( K  o.  H ) )  =  ran  H )
9998unieqd 4446 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  U. ran  ( (,)  o.  ( K  o.  H ) )  =  U. ran  H
)
100 fvex 6201 . . . . . . . . . . . . . 14  |-  ( (,) `  ( F `  z
) )  e.  _V
101100inex1 4799 . . . . . . . . . . . . 13  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  e.  _V
10246fvmpt2 6291 . . . . . . . . . . . . 13  |-  ( ( z  e.  NN  /\  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  J
) ) )  e. 
_V )  ->  ( H `  z )  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) )
103101, 102mpan2 707 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  ( H `  z )  =  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  J ) ) ) )
104 incom 3805 . . . . . . . . . . . 12  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  J )
) )  =  ( ( (,) `  ( G `  J )
)  i^i  ( (,) `  ( F `  z
) ) )
105103, 104syl6eq 2672 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  ( H `  z )  =  ( ( (,) `  ( G `  J
) )  i^i  ( (,) `  ( F `  z ) ) ) )
106105iuneq2i 4539 . . . . . . . . . 10  |-  U_ z  e.  NN  ( H `  z )  =  U_ z  e.  NN  (
( (,) `  ( G `  J )
)  i^i  ( (,) `  ( F `  z
) ) )
107 iunin2 4584 . . . . . . . . . 10  |-  U_ z  e.  NN  ( ( (,) `  ( G `  J
) )  i^i  ( (,) `  ( F `  z ) ) )  =  ( ( (,) `  ( G `  J
) )  i^i  U_ z  e.  NN  ( (,) `  ( F `  z ) ) )
108106, 107eqtri 2644 . . . . . . . . 9  |-  U_ z  e.  NN  ( H `  z )  =  ( ( (,) `  ( G `  J )
)  i^i  U_ z  e.  NN  ( (,) `  ( F `  z )
) )
10915, 46fmptd 6385 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  H : NN
--> ran  (,) )
110 ffn 6045 . . . . . . . . . . 11  |-  ( H : NN --> ran  (,)  ->  H  Fn  NN )
111109, 110syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  H  Fn  NN )
112 fniunfv 6505 . . . . . . . . . 10  |-  ( H  Fn  NN  ->  U_ z  e.  NN  ( H `  z )  =  U. ran  H )
113111, 112syl 17 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( H `  z )  =  U. ran  H )
114108, 113syl5eqr 2670 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( G `
 J ) )  i^i  U_ z  e.  NN  ( (,) `  ( F `
 z ) ) )  =  U. ran  H )
1155adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
116 fvco3 6275 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  z  e.  NN )  ->  (
( (,)  o.  F
) `  z )  =  ( (,) `  ( F `  z )
) )
117115, 116sylan 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  J  e.  NN )  /\  z  e.  NN )  ->  (
( (,)  o.  F
) `  z )  =  ( (,) `  ( F `  z )
) )
118117iuneq2dv 4542 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  U_ z  e.  NN  ( (,) `  ( F `  z ) ) )
119 ffn 6045 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
12092, 119ax-mp 5 . . . . . . . . . . . . 13  |-  (,)  Fn  ( RR*  X.  RR* )
121 fss 6056 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
122115, 90, 121sylancl 694 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  NN )  ->  F : NN
--> ( RR*  X.  RR* )
)
123 fnfco 6069 . . . . . . . . . . . . 13  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  F : NN --> ( RR*  X.  RR* ) )  ->  ( (,)  o.  F )  Fn  NN )
124120, 122, 123sylancr 695 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  NN )  ->  ( (,) 
o.  F )  Fn  NN )
125 fniunfv 6505 . . . . . . . . . . . 12  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  U. ran  ( (,)  o.  F
) )
126124, 125syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  U. ran  ( (,)  o.  F
) )
127126, 8syl6eqr 2674 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( ( (,) 
o.  F ) `  z )  =  A )
128118, 127eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  NN )  ->  U_ z  e.  NN  ( (,) `  ( F `  z )
)  =  A )
129128ineq2d 3814 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( G `
 J ) )  i^i  U_ z  e.  NN  ( (,) `  ( F `
 z ) ) )  =  ( ( (,) `  ( G `
 J ) )  i^i  A ) )
13099, 114, 1293eqtr2d 2662 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  U. ran  ( (,)  o.  ( K  o.  H ) )  =  ( ( (,) `  ( G `  J
) )  i^i  A
) )
131130fveq2d 6195 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  U. ran  ( (,)  o.  ( K  o.  H ) ) )  =  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
) )
13287, 131eqtr3d 2658 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  =  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
) )
133 inss1 3833 . . . . . . 7  |-  ( ( (,) `  ( G `
 J ) )  i^i  A )  C_  ( (,) `  ( G `
 J ) )
134133a1i 11 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( (,) `  ( G `
 J ) )  i^i  A )  C_  ( (,) `  ( G `
 J ) ) )
135 ovolsscl 23254 . . . . . 6  |-  ( ( ( ( (,) `  ( G `  J )
)  i^i  A )  C_  ( (,) `  ( G `  J )
)  /\  ( (,) `  ( G `  J
) )  C_  RR  /\  ( vol* `  ( (,) `  ( G `
 J ) ) )  e.  RR )  ->  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
)  e.  RR )
136134, 27, 37, 135syl3anc 1326 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol* `  ( ( (,) `  ( G `  J ) )  i^i 
A ) )  e.  RR )
137132, 136eqeltrd 2701 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  e.  RR )
13855, 2ovolsf 23241 . . . . . . . . 9  |-  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo ) )
13954, 138syl 17 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) : NN --> ( 0 [,) +oo ) )
140 ffn 6045 . . . . . . . 8  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo )  ->  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  Fn  NN )
141139, 140syl 17 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  Fn  NN )
142 fnfvelrn 6356 . . . . . . 7  |-  ( (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  Fn  NN  /\  y  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) )
143141, 142sylan 488 . . . . . 6  |-  ( ( ( ph  /\  J  e.  NN )  /\  y  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) )
144 frn 6053 . . . . . . . . 9  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo )  ->  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) 
C_  ( 0 [,) +oo ) )
145139, 144syl 17 . . . . . . . 8  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  C_  (
0 [,) +oo )
)
146 icossxr 12258 . . . . . . . 8  |-  ( 0 [,) +oo )  C_  RR*
147145, 146syl6ss 3615 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  C_  RR* )
148 supxrub 12154 . . . . . . 7  |-  ( ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  C_  RR* 
/\  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) )  ->  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) ,  RR* ,  <  )
)
149147, 148sylan 488 . . . . . 6  |-  ( ( ( ph  /\  J  e.  NN )  /\  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  e.  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) )  -> 
(  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )
150143, 149syldan 487 . . . . 5  |-  ( ( ( ph  /\  J  e.  NN )  /\  y  e.  NN )  ->  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  <_  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )
151150ralrimiva 2966 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) ,  RR* ,  <  )
)
152 breq2 4657 . . . . . 6  |-  ( x  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  -> 
( (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x 
<->  (  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) ) )
153152ralbidv 2986 . . . . 5  |-  ( x  =  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  -> 
( A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x 
<-> 
A. y  e.  NN  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) ) )
154153rspcev 3309 . . . 4  |-  ( ( sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR* ,  <  )  e.  RR  /\ 
A. y  e.  NN  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  ) )  ->  E. x  e.  RR  A. y  e.  NN  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) `  y
)  <_  x )
155137, 151, 154syl2anc 693 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  E. x  e.  RR  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x )
1561, 2, 3, 4, 61, 62, 155isumsup2 14578 . 2  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  ~~>  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR ,  <  ) )
15755ovolfs2 23339 . . . . 5  |-  ( ( K  o.  H ) : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( ( vol*  o.  (,) )  o.  ( K  o.  H )
) )
15854, 157syl 17 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( ( vol*  o.  (,) )  o.  ( K  o.  H )
) )
159 coass 5654 . . . . 5  |-  ( ( vol*  o.  (,) )  o.  ( K  o.  H ) )  =  ( vol*  o.  ( (,)  o.  ( K  o.  H ) ) )
16097coeq2d 5284 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( vol*  o.  ( (,)  o.  ( K  o.  H
) ) )  =  ( vol*  o.  H ) )
161159, 160syl5eq 2668 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( vol*  o.  (,) )  o.  ( K  o.  H ) )  =  ( vol*  o.  H ) )
162158, 161eqtrd 2656 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  ( ( abs  o.  -  )  o.  ( K  o.  H
) )  =  ( vol*  o.  H
) )
163162seqeq3d 12809 . 2  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =  seq 1 (  +  ,  ( vol*  o.  H )
) )
164 rge0ssre 12280 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
165145, 164syl6ss 3615 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  C_  RR )
166 1nn 11031 . . . . . . 7  |-  1  e.  NN
167 fdm 6051 . . . . . . . 8  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) : NN --> ( 0 [,) +oo )  ->  dom  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =  NN )
168139, 167syl 17 . . . . . . 7  |-  ( (
ph  /\  J  e.  NN )  ->  dom  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  =  NN )
169166, 168syl5eleqr 2708 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  1  e. 
dom  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) )
170 ne0i 3921 . . . . . 6  |-  ( 1  e.  dom  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  ->  dom  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =/=  (/) )
171169, 170syl 17 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  dom  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  =/=  (/) )
172 dm0rn0 5342 . . . . . 6  |-  ( dom 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  =  (/) 
<->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  =  (/) )
173172necon3bii 2846 . . . . 5  |-  ( dom 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) )  =/=  (/) 
<->  ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  =/=  (/) )
174171, 173sylib 208 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  =/=  (/) )
175 breq1 4656 . . . . . . . 8  |-  ( z  =  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  -> 
( z  <_  x  <->  (  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) `  y )  <_  x
) )
176175ralrn 6362 . . . . . . 7  |-  (  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) )  Fn  NN  ->  ( A. z  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) z  <_  x  <->  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x ) )
177141, 176syl 17 . . . . . 6  |-  ( (
ph  /\  J  e.  NN )  ->  ( A. z  e.  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) z  <_  x  <->  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x ) )
178177rexbidv 3052 . . . . 5  |-  ( (
ph  /\  J  e.  NN )  ->  ( E. x  e.  RR  A. z  e.  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) z  <_  x  <->  E. x  e.  RR  A. y  e.  NN  (  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) `
 y )  <_  x ) )
179155, 178mpbird 247 . . . 4  |-  ( (
ph  /\  J  e.  NN )  ->  E. x  e.  RR  A. z  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) z  <_  x )
180 supxrre 12157 . . . 4  |-  ( ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H
) ) )  C_  RR  /\  ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e. 
ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) z  <_  x )  ->  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( K  o.  H ) ) ) ,  RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR ,  <  ) )
181165, 174, 179, 180syl3anc 1326 . . 3  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  ( K  o.  H )
) ) ,  RR ,  <  ) )
182181, 132eqtr3d 2658 . 2  |-  ( (
ph  /\  J  e.  NN )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( K  o.  H
) ) ) ,  RR ,  <  )  =  ( vol* `  ( ( (,) `  ( G `  J )
)  i^i  A )
) )
183156, 163, 1823brtr3d 4684 1  |-  ( (
ph  /\  J  e.  NN )  ->  seq 1
(  +  ,  ( vol*  o.  H
) )  ~~>  ( vol* `  ( ( (,) `  ( G `  J ) )  i^i 
A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   <.cop 4183   U.cuni 4436   U_ciun 4520  Disj wdisj 4620   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   supcsup 8346  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   RR+crp 11832   (,)cioo 12175   [,)cico 12177    seqcseq 12801   abscabs 13974    ~~> cli 14215   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by:  uniioombllem6  23356
  Copyright terms: Public domain W3C validator