MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgsuci Structured version   Visualization version   Unicode version

Theorem uzrdgsuci 12759
Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 12755. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1  |-  C  e.  ZZ
om2uz.2  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
uzrdg.1  |-  A  e. 
_V
uzrdg.2  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
uzrdg.3  |-  S  =  ran  R
Assertion
Ref Expression
uzrdgsuci  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( S `  ( B  +  1 ) )  =  ( B F ( S `
 B ) ) )
Distinct variable groups:    y, A    x, y, C    y, G    x, F, y
Allowed substitution hints:    A( x)    B( x, y)    R( x, y)    S( x, y)    G( x)

Proof of Theorem uzrdgsuci
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2uz.1 . . . . . 6  |-  C  e.  ZZ
2 om2uz.2 . . . . . 6  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  C )  |`  om )
3 uzrdg.1 . . . . . 6  |-  A  e. 
_V
4 uzrdg.2 . . . . . 6  |-  R  =  ( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om )
5 uzrdg.3 . . . . . 6  |-  S  =  ran  R
61, 2, 3, 4, 5uzrdgfni 12757 . . . . 5  |-  S  Fn  ( ZZ>= `  C )
7 fnfun 5988 . . . . 5  |-  ( S  Fn  ( ZZ>= `  C
)  ->  Fun  S )
86, 7ax-mp 5 . . . 4  |-  Fun  S
9 peano2uz 11741 . . . . . 6  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( B  +  1 )  e.  ( ZZ>= `  C )
)
101, 2, 3, 4uzrdglem 12756 . . . . . 6  |-  ( ( B  +  1 )  e.  ( ZZ>= `  C
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  ran  R )
119, 10syl 17 . . . . 5  |-  ( B  e.  ( ZZ>= `  C
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  ran  R )
1211, 5syl6eleqr 2712 . . . 4  |-  ( B  e.  ( ZZ>= `  C
)  ->  <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  S
)
13 funopfv 6235 . . . 4  |-  ( Fun 
S  ->  ( <. ( B  +  1 ) ,  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) >.  e.  S  ->  ( S `  ( B  +  1 ) )  =  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) ) ) )
148, 12, 13mpsyl 68 . . 3  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( S `  ( B  +  1 ) )  =  ( 2nd `  ( R `
 ( `' G `  ( B  +  1 ) ) ) ) )
151, 2om2uzf1oi 12752 . . . . . . . 8  |-  G : om
-1-1-onto-> ( ZZ>= `  C )
16 f1ocnvdm 6540 . . . . . . . 8  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
1715, 16mpan 706 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( `' G `  B )  e.  om )
18 peano2 7086 . . . . . . 7  |-  ( ( `' G `  B )  e.  om  ->  suc  ( `' G `  B )  e.  om )
1917, 18syl 17 . . . . . 6  |-  ( B  e.  ( ZZ>= `  C
)  ->  suc  ( `' G `  B )  e.  om )
201, 2om2uzsuci 12747 . . . . . . . 8  |-  ( ( `' G `  B )  e.  om  ->  ( G `  suc  ( `' G `  B ) )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
2117, 20syl 17 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( G `  suc  ( `' G `  B ) )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
22 f1ocnvfv2 6533 . . . . . . . . 9  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
2315, 22mpan 706 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( G `  ( `' G `  B ) )  =  B )
2423oveq1d 6665 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( ( G `  ( `' G `  B )
)  +  1 )  =  ( B  + 
1 ) )
2521, 24eqtrd 2656 . . . . . 6  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 ) )
26 f1ocnvfv 6534 . . . . . . 7  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  suc  ( `' G `  B )  e.  om )  ->  ( ( G `
 suc  ( `' G `  B )
)  =  ( B  +  1 )  -> 
( `' G `  ( B  +  1
) )  =  suc  ( `' G `  B ) ) )
2715, 26mpan 706 . . . . . 6  |-  ( suc  ( `' G `  B )  e.  om  ->  ( ( G `  suc  ( `' G `  B ) )  =  ( B  +  1 )  ->  ( `' G `  ( B  +  1 ) )  =  suc  ( `' G `  B ) ) )
2819, 25, 27sylc 65 . . . . 5  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( `' G `  ( B  +  1 ) )  =  suc  ( `' G `  B ) )
2928fveq2d 6195 . . . 4  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( R `  ( `' G `  ( B  +  1
) ) )  =  ( R `  suc  ( `' G `  B ) ) )
3029fveq2d 6195 . . 3  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( 2nd `  ( R `  ( `' G `  ( B  +  1 ) ) ) )  =  ( 2nd `  ( R `
 suc  ( `' G `  B )
) ) )
3114, 30eqtrd 2656 . 2  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( S `  ( B  +  1 ) )  =  ( 2nd `  ( R `
 suc  ( `' G `  B )
) ) )
32 frsuc 7532 . . . . . . . 8  |-  ( ( `' G `  B )  e.  om  ->  (
( rec ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  suc  ( `' G `  B ) )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  ( `' G `  B ) ) ) )
334fveq1i 6192 . . . . . . . 8  |-  ( R `
 suc  ( `' G `  B )
)  =  ( ( rec ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. )  |`  om ) `  suc  ( `' G `  B ) )
344fveq1i 6192 . . . . . . . . 9  |-  ( R `
 ( `' G `  B ) )  =  ( ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  ( `' G `  B ) )
3534fveq2i 6194 . . . . . . . 8  |-  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  ( ( rec (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )  |`  om ) `  ( `' G `  B ) ) )
3632, 33, 353eqtr4g 2681 . . . . . . 7  |-  ( ( `' G `  B )  e.  om  ->  ( R `  suc  ( `' G `  B ) )  =  ( ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) ) )
371, 2, 3, 4om2uzrdg 12755 . . . . . . . . 9  |-  ( ( `' G `  B )  e.  om  ->  ( R `  ( `' G `  B )
)  =  <. ( G `  ( `' G `  B )
) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
3837fveq2d 6195 . . . . . . . 8  |-  ( ( `' G `  B )  e.  om  ->  (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) )  =  ( ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  <. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
)
39 df-ov 6653 . . . . . . . 8  |-  ( ( G `  ( `' G `  B ) ) ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  ( `' G `  B )
) ) )  =  ( ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( G `  ( `' G `  B )
) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
4038, 39syl6eqr 2674 . . . . . . 7  |-  ( ( `' G `  B )  e.  om  ->  (
( x  e.  _V ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x F y ) >.
) `  ( R `  ( `' G `  B ) ) )  =  ( ( G `
 ( `' G `  B ) ) ( x  e.  _V , 
y  e.  _V  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
4136, 40eqtrd 2656 . . . . . 6  |-  ( ( `' G `  B )  e.  om  ->  ( R `  suc  ( `' G `  B ) )  =  ( ( G `  ( `' G `  B ) ) ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
42 fvex 6201 . . . . . . 7  |-  ( G `
 ( `' G `  B ) )  e. 
_V
43 fvex 6201 . . . . . . 7  |-  ( 2nd `  ( R `  ( `' G `  B ) ) )  e.  _V
44 oveq1 6657 . . . . . . . . 9  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  ( z  +  1 )  =  ( ( G `  ( `' G `  B ) )  +  1 ) )
45 oveq1 6657 . . . . . . . . 9  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  ( z F w )  =  ( ( G `  ( `' G `  B ) ) F w ) )
4644, 45opeq12d 4410 . . . . . . . 8  |-  ( z  =  ( G `  ( `' G `  B ) )  ->  <. ( z  +  1 ) ,  ( z F w ) >.  =  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F w ) >. )
47 oveq2 6658 . . . . . . . . 9  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  (
( G `  ( `' G `  B ) ) F w )  =  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
4847opeq2d 4409 . . . . . . . 8  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  B )
) )  ->  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F w ) >.  =  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
49 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  +  1 )  =  ( z  +  1 ) )
50 oveq1 6657 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x F y )  =  ( z F y ) )
5149, 50opeq12d 4410 . . . . . . . . 9  |-  ( x  =  z  ->  <. (
x  +  1 ) ,  ( x F y ) >.  =  <. ( z  +  1 ) ,  ( z F y ) >. )
52 oveq2 6658 . . . . . . . . . 10  |-  ( y  =  w  ->  (
z F y )  =  ( z F w ) )
5352opeq2d 4409 . . . . . . . . 9  |-  ( y  =  w  ->  <. (
z  +  1 ) ,  ( z F y ) >.  =  <. ( z  +  1 ) ,  ( z F w ) >. )
5451, 53cbvmpt2v 6735 . . . . . . . 8  |-  ( x  e.  _V ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x F y ) >. )  =  ( z  e. 
_V ,  w  e. 
_V  |->  <. ( z  +  1 ) ,  ( z F w )
>. )
55 opex 4932 . . . . . . . 8  |-  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.  e.  _V
5646, 48, 54, 55ovmpt2 6796 . . . . . . 7  |-  ( ( ( G `  ( `' G `  B ) )  e.  _V  /\  ( 2nd `  ( R `
 ( `' G `  B ) ) )  e.  _V )  -> 
( ( G `  ( `' G `  B ) ) ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
5742, 43, 56mp2an 708 . . . . . 6  |-  ( ( G `  ( `' G `  B ) ) ( x  e. 
_V ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  ( R `  ( `' G `  B )
) ) )  = 
<. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
5841, 57syl6eq 2672 . . . . 5  |-  ( ( `' G `  B )  e.  om  ->  ( R `  suc  ( `' G `  B ) )  =  <. (
( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
)
5958fveq2d 6195 . . . 4  |-  ( ( `' G `  B )  e.  om  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( 2nd `  <. ( ( G `  ( `' G `  B ) )  +  1 ) ,  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) >.
) )
60 ovex 6678 . . . . 5  |-  ( ( G `  ( `' G `  B ) )  +  1 )  e.  _V
61 ovex 6678 . . . . 5  |-  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  e. 
_V
6260, 61op2nd 7177 . . . 4  |-  ( 2nd `  <. ( ( G `
 ( `' G `  B ) )  +  1 ) ,  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) >.
)  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )
6359, 62syl6eq 2672 . . 3  |-  ( ( `' G `  B )  e.  om  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( ( G `
 ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B )
) ) ) )
6417, 63syl 17 . 2  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( 2nd `  ( R `  suc  ( `' G `  B ) ) )  =  ( ( G `  ( `' G `  B ) ) F ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
651, 2, 3, 4uzrdglem 12756 . . . . . 6  |-  ( B  e.  ( ZZ>= `  C
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  ran  R )
6665, 5syl6eleqr 2712 . . . . 5  |-  ( B  e.  ( ZZ>= `  C
)  ->  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  S
)
67 funopfv 6235 . . . . 5  |-  ( Fun 
S  ->  ( <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >.  e.  S  ->  ( S `  B
)  =  ( 2nd `  ( R `  ( `' G `  B ) ) ) ) )
688, 66, 67mpsyl 68 . . . 4  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( S `  B )  =  ( 2nd `  ( R `
 ( `' G `  B ) ) ) )
6968eqcomd 2628 . . 3  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( 2nd `  ( R `  ( `' G `  B ) ) )  =  ( S `  B ) )
7023, 69oveq12d 6668 . 2  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( ( G `  ( `' G `  B )
) F ( 2nd `  ( R `  ( `' G `  B ) ) ) )  =  ( B F ( S `  B ) ) )
7131, 64, 703eqtrd 2660 1  |-  ( B  e.  ( ZZ>= `  C
)  ->  ( S `  ( B  +  1 ) )  =  ( B F ( S `
 B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729   `'ccnv 5113   ran crn 5115    |` cres 5116   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   omcom 7065   2ndc2nd 7167   reccrdg 7505   1c1 9937    + caddc 9939   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  seqp1  12816
  Copyright terms: Public domain W3C validator