| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yoniso | Structured version Visualization version Unicode version | ||
| Description: If the codomain is
recoverable from a hom-set, then the Yoneda embedding
is injective on objects, and hence is an isomorphism from |
| Ref | Expression |
|---|---|
| yoniso.y |
|
| yoniso.o |
|
| yoniso.s |
|
| yoniso.d |
|
| yoniso.b |
|
| yoniso.i |
|
| yoniso.q |
|
| yoniso.e |
|
| yoniso.v |
|
| yoniso.c |
|
| yoniso.u |
|
| yoniso.h |
|
| yoniso.eb |
|
| yoniso.1 |
|
| Ref | Expression |
|---|---|
| yoniso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 16522 |
. . . 4
| |
| 2 | yoniso.y |
. . . . 5
| |
| 3 | yoniso.d |
. . . . . . . 8
| |
| 4 | yoniso.b |
. . . . . . . 8
| |
| 5 | yoniso.v |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | catcbas 16747 |
. . . . . . 7
|
| 7 | inss2 3834 |
. . . . . . 7
| |
| 8 | 6, 7 | syl6eqss 3655 |
. . . . . 6
|
| 9 | yoniso.c |
. . . . . 6
| |
| 10 | 8, 9 | sseldd 3604 |
. . . . 5
|
| 11 | yoniso.o |
. . . . 5
| |
| 12 | yoniso.s |
. . . . 5
| |
| 13 | yoniso.q |
. . . . 5
| |
| 14 | yoniso.u |
. . . . 5
| |
| 15 | yoniso.h |
. . . . 5
| |
| 16 | 2, 10, 11, 12, 13, 14, 15 | yoncl 16902 |
. . . 4
|
| 17 | 1st2nd 7214 |
. . . 4
| |
| 18 | 1, 16, 17 | sylancr 695 |
. . 3
|
| 19 | 2, 11, 12, 13, 10, 14, 15 | yonffth 16924 |
. . . . 5
|
| 20 | 18, 19 | eqeltrrd 2702 |
. . . 4
|
| 21 | eqid 2622 |
. . . . . 6
| |
| 22 | yoniso.e |
. . . . . 6
| |
| 23 | 11 | oppccat 16382 |
. . . . . . . 8
|
| 24 | 10, 23 | syl 17 |
. . . . . . 7
|
| 25 | 12 | setccat 16735 |
. . . . . . . 8
|
| 26 | 14, 25 | syl 17 |
. . . . . . 7
|
| 27 | 13, 24, 26 | fuccat 16630 |
. . . . . 6
|
| 28 | fvex 6201 |
. . . . . . . 8
| |
| 29 | 28 | rnex 7100 |
. . . . . . 7
|
| 30 | 29 | a1i 11 |
. . . . . 6
|
| 31 | 13 | fucbas 16620 |
. . . . . . . . 9
|
| 32 | 1st2ndbr 7217 |
. . . . . . . . . 10
| |
| 33 | 1, 16, 32 | sylancr 695 |
. . . . . . . . 9
|
| 34 | 21, 31, 33 | funcf1 16526 |
. . . . . . . 8
|
| 35 | ffn 6045 |
. . . . . . . 8
| |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
|
| 37 | dffn3 6054 |
. . . . . . 7
| |
| 38 | 36, 37 | sylib 208 |
. . . . . 6
|
| 39 | 21, 22, 27, 30, 38 | ffthres2c 16600 |
. . . . 5
|
| 40 | df-br 4654 |
. . . . 5
| |
| 41 | df-br 4654 |
. . . . 5
| |
| 42 | 39, 40, 41 | 3bitr3g 302 |
. . . 4
|
| 43 | 20, 42 | mpbid 222 |
. . 3
|
| 44 | 18, 43 | eqeltrd 2701 |
. 2
|
| 45 | fveq2 6191 |
. . . . . . . . 9
| |
| 46 | 45 | fveq1d 6193 |
. . . . . . . 8
|
| 47 | 46 | fveq2d 6195 |
. . . . . . 7
|
| 48 | simpl 473 |
. . . . . . . . . 10
| |
| 49 | 48, 48 | jca 554 |
. . . . . . . . 9
|
| 50 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 51 | 50 | anbi2d 740 |
. . . . . . . . . . . 12
|
| 52 | 51 | anbi2d 740 |
. . . . . . . . . . 11
|
| 53 | fveq2 6191 |
. . . . . . . . . . . . . . 15
| |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . . . . . . 14
|
| 55 | 54 | fveq1d 6193 |
. . . . . . . . . . . . 13
|
| 56 | 55 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 57 | id 22 |
. . . . . . . . . . . 12
| |
| 58 | 56, 57 | eqeq12d 2637 |
. . . . . . . . . . 11
|
| 59 | 52, 58 | imbi12d 334 |
. . . . . . . . . 10
|
| 60 | 10 | adantr 481 |
. . . . . . . . . . . . 13
|
| 61 | simprr 796 |
. . . . . . . . . . . . 13
| |
| 62 | eqid 2622 |
. . . . . . . . . . . . 13
| |
| 63 | simprl 794 |
. . . . . . . . . . . . 13
| |
| 64 | 2, 21, 60, 61, 62, 63 | yon11 16904 |
. . . . . . . . . . . 12
|
| 65 | 64 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 66 | yoniso.1 |
. . . . . . . . . . 11
| |
| 67 | 65, 66 | eqtrd 2656 |
. . . . . . . . . 10
|
| 68 | 59, 67 | chvarv 2263 |
. . . . . . . . 9
|
| 69 | 49, 68 | sylan2 491 |
. . . . . . . 8
|
| 70 | 69, 67 | eqeq12d 2637 |
. . . . . . 7
|
| 71 | 47, 70 | syl5ib 234 |
. . . . . 6
|
| 72 | 71 | ralrimivva 2971 |
. . . . 5
|
| 73 | dff13 6512 |
. . . . 5
| |
| 74 | 34, 72, 73 | sylanbrc 698 |
. . . 4
|
| 75 | f1f1orn 6148 |
. . . 4
| |
| 76 | 74, 75 | syl 17 |
. . 3
|
| 77 | frn 6053 |
. . . . . 6
| |
| 78 | 34, 77 | syl 17 |
. . . . 5
|
| 79 | 22, 31 | ressbas2 15931 |
. . . . 5
|
| 80 | 78, 79 | syl 17 |
. . . 4
|
| 81 | f1oeq3 6129 |
. . . 4
| |
| 82 | 80, 81 | syl 17 |
. . 3
|
| 83 | 76, 82 | mpbid 222 |
. 2
|
| 84 | eqid 2622 |
. . 3
| |
| 85 | yoniso.eb |
. . 3
| |
| 86 | yoniso.i |
. . 3
| |
| 87 | 3, 4, 21, 84, 5, 9, 85, 86 | catciso 16757 |
. 2
|
| 88 | 44, 83, 87 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-hom 15966 df-cco 15967 df-cat 16329 df-cid 16330 df-homf 16331 df-comf 16332 df-oppc 16372 df-sect 16407 df-inv 16408 df-iso 16409 df-ssc 16470 df-resc 16471 df-subc 16472 df-func 16518 df-idfu 16519 df-cofu 16520 df-full 16564 df-fth 16565 df-nat 16603 df-fuc 16604 df-setc 16726 df-catc 16745 df-xpc 16812 df-1stf 16813 df-2ndf 16814 df-prf 16815 df-evlf 16853 df-curf 16854 df-hof 16890 df-yon 16891 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |