MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zesq Structured version   Visualization version   Unicode version

Theorem zesq 12987
Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
zesq  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )

Proof of Theorem zesq
StepHypRef Expression
1 zcn 11382 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2 sqval 12922 . . . . . . 7  |-  ( N  e.  CC  ->  ( N ^ 2 )  =  ( N  x.  N
) )
31, 2syl 17 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  =  ( N  x.  N
) )
43oveq1d 6665 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( ( N  x.  N )  / 
2 ) )
5 2cnd 11093 . . . . . 6  |-  ( N  e.  ZZ  ->  2  e.  CC )
6 2ne0 11113 . . . . . . 7  |-  2  =/=  0
76a1i 11 . . . . . 6  |-  ( N  e.  ZZ  ->  2  =/=  0 )
81, 1, 5, 7divassd 10836 . . . . 5  |-  ( N  e.  ZZ  ->  (
( N  x.  N
)  /  2 )  =  ( N  x.  ( N  /  2
) ) )
94, 8eqtrd 2656 . . . 4  |-  ( N  e.  ZZ  ->  (
( N ^ 2 )  /  2 )  =  ( N  x.  ( N  /  2
) ) )
109adantr 481 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  =  ( N  x.  ( N  /  2 ) ) )
11 zmulcl 11426 . . 3  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( N  x.  ( N  /  2
) )  e.  ZZ )
1210, 11eqeltrd 2701 . 2  |-  ( ( N  e.  ZZ  /\  ( N  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  / 
2 )  e.  ZZ )
131adantr 481 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  CC )
14 sqcl 12925 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  ( N ^ 2 )  e.  CC )
1513, 14syl 17 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N ^
2 )  e.  CC )
16 peano2cn 10208 . . . . . . . . . 10  |-  ( ( N ^ 2 )  e.  CC  ->  (
( N ^ 2 )  +  1 )  e.  CC )
1715, 16syl 17 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N ^ 2 )  +  1 )  e.  CC )
1817halfcld 11277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  CC )
1918, 13pncand 10393 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  =  ( ( ( N ^
2 )  +  1 )  /  2 ) )
20 binom21 12980 . . . . . . . . . . . . 13  |-  ( N  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 ) )
2113, 20syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( ( N ^
2 )  +  ( 2  x.  N ) )  +  1 ) )
22 peano2cn 10208 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  ( N  +  1 )  e.  CC )
2313, 22syl 17 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( N  + 
1 )  e.  CC )
24 sqval 12922 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  CC  ->  (
( N  +  1 ) ^ 2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
2523, 24syl 17 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 ) ^
2 )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
26 2cn 11091 . . . . . . . . . . . . . 14  |-  2  e.  CC
27 mulcl 10020 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  N  e.  CC )  ->  ( 2  x.  N
)  e.  CC )
2826, 13, 27sylancr 695 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( 2  x.  N )  e.  CC )
29 1cnd 10056 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  1  e.  CC )
3015, 28, 29add32d 10263 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  ( 2  x.  N ) )  +  1 )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3121, 25, 303eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( ( N ^
2 )  +  1 )  +  ( 2  x.  N ) ) )
3231oveq1d 6665 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  /  2 ) )
33 2cnd 11093 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2  e.  CC )
346a1i 11 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  2  =/=  0
)
3523, 23, 33, 34divassd 10836 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N  +  1 )  x.  ( N  + 
1 ) )  / 
2 )  =  ( ( N  +  1 )  x.  ( ( N  +  1 )  /  2 ) ) )
3617, 28, 33, 34divdird 10839 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  ( ( 2  x.  N )  /  2 ) ) )
3713, 33, 34divcan3d 10806 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( 2  x.  N )  / 
2 )  =  N )
3837oveq2d 6666 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  ( ( 2  x.  N )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
3936, 38eqtrd 2656 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  +  ( 2  x.  N ) )  / 
2 )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
4032, 35, 393eqtr3d 2664 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  =  ( ( ( ( N ^ 2 )  +  1 )  /  2
)  +  N ) )
41 peano2z 11418 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
42 zmulcl 11426 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4341, 42sylan 488 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( N  +  1 )  x.  ( ( N  + 
1 )  /  2
) )  e.  ZZ )
4440, 43eqeltrrd 2702 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( N ^ 2 )  +  1 )  /  2 )  +  N )  e.  ZZ )
45 simpl 473 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  N  e.  ZZ )
4644, 45zsubcld 11487 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( N ^
2 )  +  1 )  /  2 )  +  N )  -  N )  e.  ZZ )
4719, 46eqeltrrd 2702 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( N  + 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( N ^ 2 )  +  1 )  / 
2 )  e.  ZZ )
4847ex 450 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  + 
1 )  /  2
)  e.  ZZ  ->  ( ( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
4948con3d 148 . . . 4  |-  ( N  e.  ZZ  ->  ( -.  ( ( ( N ^ 2 )  +  1 )  /  2
)  e.  ZZ  ->  -.  ( ( N  + 
1 )  /  2
)  e.  ZZ ) )
50 zsqcl 12934 . . . . 5  |-  ( N  e.  ZZ  ->  ( N ^ 2 )  e.  ZZ )
51 zeo2 11464 . . . . 5  |-  ( ( N ^ 2 )  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
5250, 51syl 17 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  <->  -.  (
( ( N ^
2 )  +  1 )  /  2 )  e.  ZZ ) )
53 zeo2 11464 . . . 4  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  -.  (
( N  +  1 )  /  2 )  e.  ZZ ) )
5449, 52, 533imtr4d 283 . . 3  |-  ( N  e.  ZZ  ->  (
( ( N ^
2 )  /  2
)  e.  ZZ  ->  ( N  /  2 )  e.  ZZ ) )
5554imp 445 . 2  |-  ( ( N  e.  ZZ  /\  ( ( N ^
2 )  /  2
)  e.  ZZ )  ->  ( N  / 
2 )  e.  ZZ )
5612, 55impbida 877 1  |-  ( N  e.  ZZ  ->  (
( N  /  2
)  e.  ZZ  <->  ( ( N ^ 2 )  / 
2 )  e.  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   2c2 11070   ZZcz 11377   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  nnesq  12988  sqrt2irrlem  14977  sqrt2irrlemOLD  14978
  Copyright terms: Public domain W3C validator