| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfp1 | Structured version Visualization version Unicode version | ||
| Description: If the |
| Ref | Expression |
|---|---|
| ballotth.m |
|
| ballotth.n |
|
| ballotth.o |
|
| ballotth.p |
|
| ballotth.f |
|
| ballotlemfp1.c |
|
| ballotlemfp1.j |
|
| Ref | Expression |
|---|---|
| ballotlemfp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m |
. . . . . 6
| |
| 2 | ballotth.n |
. . . . . 6
| |
| 3 | ballotth.o |
. . . . . 6
| |
| 4 | ballotth.p |
. . . . . 6
| |
| 5 | ballotth.f |
. . . . . 6
| |
| 6 | ballotlemfp1.c |
. . . . . 6
| |
| 7 | ballotlemfp1.j |
. . . . . . 7
| |
| 8 | 7 | nnzd 11481 |
. . . . . 6
|
| 9 | 1, 2, 3, 4, 5, 6, 8 | ballotlemfval 30551 |
. . . . 5
|
| 10 | 9 | adantr 481 |
. . . 4
|
| 11 | fzfi 12771 |
. . . . . . . . . 10
| |
| 12 | inss1 3833 |
. . . . . . . . . 10
| |
| 13 | ssfi 8180 |
. . . . . . . . . 10
| |
| 14 | 11, 12, 13 | mp2an 708 |
. . . . . . . . 9
|
| 15 | hashcl 13147 |
. . . . . . . . 9
| |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . 8
|
| 17 | 16 | nn0cni 11304 |
. . . . . . 7
|
| 18 | 17 | a1i 11 |
. . . . . 6
|
| 19 | diffi 8192 |
. . . . . . . . . 10
| |
| 20 | 11, 19 | ax-mp 5 |
. . . . . . . . 9
|
| 21 | hashcl 13147 |
. . . . . . . . 9
| |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . 8
|
| 23 | 22 | nn0cni 11304 |
. . . . . . 7
|
| 24 | 23 | a1i 11 |
. . . . . 6
|
| 25 | 1cnd 10056 |
. . . . . 6
| |
| 26 | 18, 24, 25 | subsub4d 10423 |
. . . . 5
|
| 27 | 1zzd 11408 |
. . . . . . . . 9
| |
| 28 | 8, 27 | zsubcld 11487 |
. . . . . . . 8
|
| 29 | 1, 2, 3, 4, 5, 6, 28 | ballotlemfval 30551 |
. . . . . . 7
|
| 30 | 29 | adantr 481 |
. . . . . 6
|
| 31 | 30 | oveq1d 6665 |
. . . . 5
|
| 32 | elnnuz 11724 |
. . . . . . . . . . 11
| |
| 33 | 7, 32 | sylib 208 |
. . . . . . . . . 10
|
| 34 | fzspl 29550 |
. . . . . . . . . . . 12
| |
| 35 | 34 | ineq1d 3813 |
. . . . . . . . . . 11
|
| 36 | indir 3875 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | syl6eq 2672 |
. . . . . . . . . 10
|
| 38 | 33, 37 | syl 17 |
. . . . . . . . 9
|
| 39 | 38 | adantr 481 |
. . . . . . . 8
|
| 40 | disjsn 4246 |
. . . . . . . . . . . 12
| |
| 41 | incom 3805 |
. . . . . . . . . . . . 13
| |
| 42 | 41 | eqeq1i 2627 |
. . . . . . . . . . . 12
|
| 43 | 40, 42 | sylbb1 227 |
. . . . . . . . . . 11
|
| 44 | 43 | adantl 482 |
. . . . . . . . . 10
|
| 45 | 44 | uneq2d 3767 |
. . . . . . . . 9
|
| 46 | un0 3967 |
. . . . . . . . 9
| |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . . 8
|
| 48 | 39, 47 | eqtrd 2656 |
. . . . . . 7
|
| 49 | 48 | fveq2d 6195 |
. . . . . 6
|
| 50 | 34 | difeq1d 3727 |
. . . . . . . . . . 11
|
| 51 | difundir 3880 |
. . . . . . . . . . 11
| |
| 52 | 50, 51 | syl6eq 2672 |
. . . . . . . . . 10
|
| 53 | 33, 52 | syl 17 |
. . . . . . . . 9
|
| 54 | disj3 4021 |
. . . . . . . . . . . 12
| |
| 55 | 43, 54 | sylib 208 |
. . . . . . . . . . 11
|
| 56 | 55 | eqcomd 2628 |
. . . . . . . . . 10
|
| 57 | 56 | uneq2d 3767 |
. . . . . . . . 9
|
| 58 | 53, 57 | sylan9eq 2676 |
. . . . . . . 8
|
| 59 | 58 | fveq2d 6195 |
. . . . . . 7
|
| 60 | 8 | adantr 481 |
. . . . . . . 8
|
| 61 | uzid 11702 |
. . . . . . . . . . . 12
| |
| 62 | uznfz 12423 |
. . . . . . . . . . . 12
| |
| 63 | 8, 61, 62 | 3syl 18 |
. . . . . . . . . . 11
|
| 64 | 63 | adantr 481 |
. . . . . . . . . 10
|
| 65 | difss 3737 |
. . . . . . . . . . 11
| |
| 66 | 65 | sseli 3599 |
. . . . . . . . . 10
|
| 67 | 64, 66 | nsyl 135 |
. . . . . . . . 9
|
| 68 | ssfi 8180 |
. . . . . . . . . 10
| |
| 69 | 11, 65, 68 | mp2an 708 |
. . . . . . . . 9
|
| 70 | 67, 69 | jctil 560 |
. . . . . . . 8
|
| 71 | hashunsng 13181 |
. . . . . . . 8
| |
| 72 | 60, 70, 71 | sylc 65 |
. . . . . . 7
|
| 73 | 59, 72 | eqtrd 2656 |
. . . . . 6
|
| 74 | 49, 73 | oveq12d 6668 |
. . . . 5
|
| 75 | 26, 31, 74 | 3eqtr4rd 2667 |
. . . 4
|
| 76 | 10, 75 | eqtrd 2656 |
. . 3
|
| 77 | 76 | ex 450 |
. 2
|
| 78 | 9 | adantr 481 |
. . . 4
|
| 79 | 17 | a1i 11 |
. . . . . 6
|
| 80 | 1cnd 10056 |
. . . . . 6
| |
| 81 | 23 | a1i 11 |
. . . . . 6
|
| 82 | 79, 80, 81 | addsubd 10413 |
. . . . 5
|
| 83 | 38 | fveq2d 6195 |
. . . . . . . 8
|
| 84 | 83 | adantr 481 |
. . . . . . 7
|
| 85 | snssi 4339 |
. . . . . . . . . . 11
| |
| 86 | df-ss 3588 |
. . . . . . . . . . 11
| |
| 87 | 85, 86 | sylib 208 |
. . . . . . . . . 10
|
| 88 | 87 | uneq2d 3767 |
. . . . . . . . 9
|
| 89 | 88 | fveq2d 6195 |
. . . . . . . 8
|
| 90 | 89 | adantl 482 |
. . . . . . 7
|
| 91 | simpr 477 |
. . . . . . . 8
| |
| 92 | 8 | adantr 481 |
. . . . . . . . . . 11
|
| 93 | 92, 61, 62 | 3syl 18 |
. . . . . . . . . 10
|
| 94 | 12 | sseli 3599 |
. . . . . . . . . 10
|
| 95 | 93, 94 | nsyl 135 |
. . . . . . . . 9
|
| 96 | 95, 14 | jctil 560 |
. . . . . . . 8
|
| 97 | hashunsng 13181 |
. . . . . . . 8
| |
| 98 | 91, 96, 97 | sylc 65 |
. . . . . . 7
|
| 99 | 84, 90, 98 | 3eqtrd 2660 |
. . . . . 6
|
| 100 | 53 | fveq2d 6195 |
. . . . . . . 8
|
| 101 | 100 | adantr 481 |
. . . . . . 7
|
| 102 | difin2 3890 |
. . . . . . . . . . . 12
| |
| 103 | difid 3948 |
. . . . . . . . . . . . . 14
| |
| 104 | 103 | ineq1i 3810 |
. . . . . . . . . . . . 13
|
| 105 | 0in 3969 |
. . . . . . . . . . . . 13
| |
| 106 | 104, 105 | eqtri 2644 |
. . . . . . . . . . . 12
|
| 107 | 102, 106 | syl6eq 2672 |
. . . . . . . . . . 11
|
| 108 | 85, 107 | syl 17 |
. . . . . . . . . 10
|
| 109 | 108 | uneq2d 3767 |
. . . . . . . . 9
|
| 110 | 109 | fveq2d 6195 |
. . . . . . . 8
|
| 111 | 110 | adantl 482 |
. . . . . . 7
|
| 112 | un0 3967 |
. . . . . . . . 9
| |
| 113 | 112 | a1i 11 |
. . . . . . . 8
|
| 114 | 113 | fveq2d 6195 |
. . . . . . 7
|
| 115 | 101, 111, 114 | 3eqtrd 2660 |
. . . . . 6
|
| 116 | 99, 115 | oveq12d 6668 |
. . . . 5
|
| 117 | 29 | adantr 481 |
. . . . . 6
|
| 118 | 117 | oveq1d 6665 |
. . . . 5
|
| 119 | 82, 116, 118 | 3eqtr4d 2666 |
. . . 4
|
| 120 | 78, 119 | eqtrd 2656 |
. . 3
|
| 121 | 120 | ex 450 |
. 2
|
| 122 | 77, 121 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
| This theorem is referenced by: ballotlemfc0 30554 ballotlemfcc 30555 ballotlem4 30560 ballotlemi1 30564 ballotlemii 30565 ballotlemic 30568 ballotlem1c 30569 |
| Copyright terms: Public domain | W3C validator |