MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubrglem Structured version   Visualization version   GIF version

Theorem cphsubrglem 22977
Description: Lemma for cphsubrg 22980. (Contributed by Mario Carneiro, 9-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k 𝐾 = (Base‘𝐹)
cphsubrglem.1 (𝜑𝐹 = (ℂflds 𝐴))
cphsubrglem.2 (𝜑𝐹 ∈ DivRing)
Assertion
Ref Expression
cphsubrglem (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))

Proof of Theorem cphsubrglem
StepHypRef Expression
1 cphsubrglem.1 . . 3 (𝜑𝐹 = (ℂflds 𝐴))
2 cphsubrglem.k . . . . . 6 𝐾 = (Base‘𝐹)
31fveq2d 6195 . . . . . . 7 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐴)))
4 cphsubrglem.2 . . . . . . . . . . . 12 (𝜑𝐹 ∈ DivRing)
5 drngring 18754 . . . . . . . . . . . 12 (𝐹 ∈ DivRing → 𝐹 ∈ Ring)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ Ring)
71, 6eqeltrrd 2702 . . . . . . . . . 10 (𝜑 → (ℂflds 𝐴) ∈ Ring)
8 eqid 2622 . . . . . . . . . . 11 (Base‘(ℂflds 𝐴)) = (Base‘(ℂflds 𝐴))
9 eqid 2622 . . . . . . . . . . 11 (0g‘(ℂflds 𝐴)) = (0g‘(ℂflds 𝐴))
108, 9ring0cl 18569 . . . . . . . . . 10 ((ℂflds 𝐴) ∈ Ring → (0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)))
11 reldmress 15926 . . . . . . . . . . 11 Rel dom ↾s
12 eqid 2622 . . . . . . . . . . 11 (ℂflds 𝐴) = (ℂflds 𝐴)
1311, 12, 8elbasov 15921 . . . . . . . . . 10 ((0g‘(ℂflds 𝐴)) ∈ (Base‘(ℂflds 𝐴)) → (ℂfld ∈ V ∧ 𝐴 ∈ V))
147, 10, 133syl 18 . . . . . . . . 9 (𝜑 → (ℂfld ∈ V ∧ 𝐴 ∈ V))
1514simprd 479 . . . . . . . 8 (𝜑𝐴 ∈ V)
16 cnfldbas 19750 . . . . . . . . 9 ℂ = (Base‘ℂfld)
1712, 16ressbas 15930 . . . . . . . 8 (𝐴 ∈ V → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
1815, 17syl 17 . . . . . . 7 (𝜑 → (𝐴 ∩ ℂ) = (Base‘(ℂflds 𝐴)))
193, 18eqtr4d 2659 . . . . . 6 (𝜑 → (Base‘𝐹) = (𝐴 ∩ ℂ))
202, 19syl5eq 2668 . . . . 5 (𝜑𝐾 = (𝐴 ∩ ℂ))
2120oveq2d 6666 . . . 4 (𝜑 → (ℂflds 𝐾) = (ℂflds (𝐴 ∩ ℂ)))
2216ressinbas 15936 . . . . 5 (𝐴 ∈ V → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2315, 22syl 17 . . . 4 (𝜑 → (ℂflds 𝐴) = (ℂflds (𝐴 ∩ ℂ)))
2421, 23eqtr4d 2659 . . 3 (𝜑 → (ℂflds 𝐾) = (ℂflds 𝐴))
251, 24eqtr4d 2659 . 2 (𝜑𝐹 = (ℂflds 𝐾))
2625, 6eqeltrrd 2702 . . . 4 (𝜑 → (ℂflds 𝐾) ∈ Ring)
27 cnring 19768 . . . 4 fld ∈ Ring
2826, 27jctil 560 . . 3 (𝜑 → (ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring))
2912, 16ressbasss 15932 . . . . . 6 (Base‘(ℂflds 𝐴)) ⊆ ℂ
303, 29syl6eqss 3655 . . . . 5 (𝜑 → (Base‘𝐹) ⊆ ℂ)
312, 30syl5eqss 3649 . . . 4 (𝜑𝐾 ⊆ ℂ)
32 eqid 2622 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
33 eqid 2622 . . . . . . . . . 10 (1r𝐹) = (1r𝐹)
3432, 33drngunz 18762 . . . . . . . . 9 (𝐹 ∈ DivRing → (1r𝐹) ≠ (0g𝐹))
354, 34syl 17 . . . . . . . 8 (𝜑 → (1r𝐹) ≠ (0g𝐹))
3625fveq2d 6195 . . . . . . . . 9 (𝜑 → (0g𝐹) = (0g‘(ℂflds 𝐾)))
37 ringgrp 18552 . . . . . . . . . . . 12 (ℂfld ∈ Ring → ℂfld ∈ Grp)
3827, 37mp1i 13 . . . . . . . . . . 11 (𝜑 → ℂfld ∈ Grp)
39 ringgrp 18552 . . . . . . . . . . . 12 ((ℂflds 𝐾) ∈ Ring → (ℂflds 𝐾) ∈ Grp)
4026, 39syl 17 . . . . . . . . . . 11 (𝜑 → (ℂflds 𝐾) ∈ Grp)
4116issubg 17594 . . . . . . . . . . 11 (𝐾 ∈ (SubGrp‘ℂfld) ↔ (ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ (ℂflds 𝐾) ∈ Grp))
4238, 31, 40, 41syl3anbrc 1246 . . . . . . . . . 10 (𝜑𝐾 ∈ (SubGrp‘ℂfld))
43 eqid 2622 . . . . . . . . . . 11 (ℂflds 𝐾) = (ℂflds 𝐾)
44 cnfld0 19770 . . . . . . . . . . 11 0 = (0g‘ℂfld)
4543, 44subg0 17600 . . . . . . . . . 10 (𝐾 ∈ (SubGrp‘ℂfld) → 0 = (0g‘(ℂflds 𝐾)))
4642, 45syl 17 . . . . . . . . 9 (𝜑 → 0 = (0g‘(ℂflds 𝐾)))
4736, 46eqtr4d 2659 . . . . . . . 8 (𝜑 → (0g𝐹) = 0)
4835, 47neeqtrd 2863 . . . . . . 7 (𝜑 → (1r𝐹) ≠ 0)
4948neneqd 2799 . . . . . 6 (𝜑 → ¬ (1r𝐹) = 0)
502, 33ringidcl 18568 . . . . . . . . . . . 12 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
516, 50syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝐹) ∈ 𝐾)
5231, 51sseldd 3604 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ ℂ)
5352sqvald 13005 . . . . . . . . 9 (𝜑 → ((1r𝐹)↑2) = ((1r𝐹) · (1r𝐹)))
5425fveq2d 6195 . . . . . . . . . 10 (𝜑 → (1r𝐹) = (1r‘(ℂflds 𝐾)))
5554oveq1d 6665 . . . . . . . . 9 (𝜑 → ((1r𝐹) · (1r𝐹)) = ((1r‘(ℂflds 𝐾)) · (1r𝐹)))
5625fveq2d 6195 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
572, 56syl5eq 2668 . . . . . . . . . . 11 (𝜑𝐾 = (Base‘(ℂflds 𝐾)))
5851, 57eleqtrd 2703 . . . . . . . . . 10 (𝜑 → (1r𝐹) ∈ (Base‘(ℂflds 𝐾)))
59 eqid 2622 . . . . . . . . . . 11 (Base‘(ℂflds 𝐾)) = (Base‘(ℂflds 𝐾))
60 fvex 6201 . . . . . . . . . . . . 13 (Base‘𝐹) ∈ V
612, 60eqeltri 2697 . . . . . . . . . . . 12 𝐾 ∈ V
62 cnfldmul 19752 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
6343, 62ressmulr 16006 . . . . . . . . . . . 12 (𝐾 ∈ V → · = (.r‘(ℂflds 𝐾)))
6461, 63ax-mp 5 . . . . . . . . . . 11 · = (.r‘(ℂflds 𝐾))
65 eqid 2622 . . . . . . . . . . 11 (1r‘(ℂflds 𝐾)) = (1r‘(ℂflds 𝐾))
6659, 64, 65ringlidm 18571 . . . . . . . . . 10 (((ℂflds 𝐾) ∈ Ring ∧ (1r𝐹) ∈ (Base‘(ℂflds 𝐾))) → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6726, 58, 66syl2anc 693 . . . . . . . . 9 (𝜑 → ((1r‘(ℂflds 𝐾)) · (1r𝐹)) = (1r𝐹))
6853, 55, 673eqtrd 2660 . . . . . . . 8 (𝜑 → ((1r𝐹)↑2) = (1r𝐹))
69 sq01 12986 . . . . . . . . 9 ((1r𝐹) ∈ ℂ → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
7052, 69syl 17 . . . . . . . 8 (𝜑 → (((1r𝐹)↑2) = (1r𝐹) ↔ ((1r𝐹) = 0 ∨ (1r𝐹) = 1)))
7168, 70mpbid 222 . . . . . . 7 (𝜑 → ((1r𝐹) = 0 ∨ (1r𝐹) = 1))
7271ord 392 . . . . . 6 (𝜑 → (¬ (1r𝐹) = 0 → (1r𝐹) = 1))
7349, 72mpd 15 . . . . 5 (𝜑 → (1r𝐹) = 1)
7473, 51eqeltrrd 2702 . . . 4 (𝜑 → 1 ∈ 𝐾)
7531, 74jca 554 . . 3 (𝜑 → (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾))
76 cnfld1 19771 . . . 4 1 = (1r‘ℂfld)
7716, 76issubrg 18780 . . 3 (𝐾 ∈ (SubRing‘ℂfld) ↔ ((ℂfld ∈ Ring ∧ (ℂflds 𝐾) ∈ Ring) ∧ (𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾)))
7828, 75, 77sylanbrc 698 . 2 (𝜑𝐾 ∈ (SubRing‘ℂfld))
7925, 20, 783jca 1242 1 (𝜑 → (𝐹 = (ℂflds 𝐾) ∧ 𝐾 = (𝐴 ∩ ℂ) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cin 3573  wss 3574  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   · cmul 9941  2c2 11070  cexp 12860  Basecbs 15857  s cress 15858  .rcmulr 15942  0gc0g 16100  Grpcgrp 17422  SubGrpcsubg 17588  1rcur 18501  Ringcrg 18547  DivRingcdr 18747  SubRingcsubrg 18776  fldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-exp 12861  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-drng 18749  df-subrg 18778  df-cnfld 19747
This theorem is referenced by:  cphreccllem  22978  cphsubrg  22980  tchclm  23031  tchcph  23036
  Copyright terms: Public domain W3C validator