MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1mul Structured version   Visualization version   Unicode version

Theorem cply1mul 19664
Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cply1mul.p  |-  P  =  (Poly1 `  R )
cply1mul.b  |-  B  =  ( Base `  P
)
cply1mul.0  |-  .0.  =  ( 0g `  R )
cply1mul.m  |-  .X.  =  ( .r `  P )
Assertion
Ref Expression
cply1mul  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  )  ->  A. c  e.  NN  ( (coe1 `  ( F  .X.  G ) ) `
 c )  =  .0.  ) )
Distinct variable groups:    F, c    G, c    .X. , c    .0. , c
Allowed substitution hints:    B( c)    P( c)    R( c)

Proof of Theorem cply1mul
Dummy variables  k  n  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cply1mul.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
2 cply1mul.m . . . . . . . . . 10  |-  .X.  =  ( .r `  P )
3 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
4 cply1mul.b . . . . . . . . . 10  |-  B  =  ( Base `  P
)
51, 2, 3, 4coe1mul 19640 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  G  e.  B )  ->  (coe1 `  ( F  .X.  G ) )  =  ( s  e.  NN0  |->  ( R 
gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( s  -  k ) ) ) ) ) ) )
653expb 1266 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  (coe1 `  ( F  .X.  G ) )  =  ( s  e. 
NN0  |->  ( R  gsumg  ( k  e.  ( 0 ... s )  |->  ( ( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( s  -  k
) ) ) ) ) ) )
76adantr 481 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  -> 
(coe1 `  ( F  .X.  G ) )  =  ( s  e.  NN0  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( s  -  k ) ) ) ) ) ) )
87adantr 481 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  (coe1 `  ( F  .X.  G ) )  =  ( s  e.  NN0  |->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( s  -  k ) ) ) ) ) ) )
9 oveq2 6658 . . . . . . . . 9  |-  ( s  =  n  ->  (
0 ... s )  =  ( 0 ... n
) )
10 oveq1 6657 . . . . . . . . . . 11  |-  ( s  =  n  ->  (
s  -  k )  =  ( n  -  k ) )
1110fveq2d 6195 . . . . . . . . . 10  |-  ( s  =  n  ->  (
(coe1 `  G ) `  ( s  -  k
) )  =  ( (coe1 `  G ) `  ( n  -  k
) ) )
1211oveq2d 6666 . . . . . . . . 9  |-  ( s  =  n  ->  (
( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( s  -  k
) ) )  =  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) )
139, 12mpteq12dv 4733 . . . . . . . 8  |-  ( s  =  n  ->  (
k  e.  ( 0 ... s )  |->  ( ( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( s  -  k
) ) ) )  =  ( k  e.  ( 0 ... n
)  |->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) ) ) )
1413oveq2d 6666 . . . . . . 7  |-  ( s  =  n  ->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( s  -  k ) ) ) ) )  =  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) ) ) )
1514adantl 482 . . . . . 6  |-  ( ( ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  /\  A. c  e.  NN  ( ( (coe1 `  F ) `  c
)  =  .0.  /\  ( (coe1 `  G ) `  c )  =  .0.  ) )  /\  n  e.  NN )  /\  s  =  n )  ->  ( R  gsumg  ( k  e.  ( 0 ... s ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( s  -  k ) ) ) ) )  =  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) ) ) )
16 nnnn0 11299 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  NN0 )
1716adantl 482 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  n  e.  NN0 )
18 ovexd 6680 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) ) )  e. 
_V )
198, 15, 17, 18fvmptd 6288 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  ( (coe1 `  ( F  .X.  G ) ) `  n )  =  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) ) ) )
20 r19.26 3064 . . . . . . . . . 10  |-  ( A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  )  <->  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
/\  A. c  e.  NN  ( (coe1 `  G ) `  c )  =  .0.  ) )
21 oveq2 6658 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  0  ->  (
n  -  k )  =  ( n  - 
0 ) )
22 nncn 11028 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  e.  CC )
2322subid1d 10381 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
n  -  0 )  =  n )
2423adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( n  - 
0 )  =  n )
2521, 24sylan9eqr 2678 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  ( n  -  k )  =  n )
26 simpll 790 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  n  e.  NN )
2725, 26eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  ( n  -  k )  e.  NN )
28 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( c  =  ( n  -  k )  ->  (
(coe1 `  G ) `  c )  =  ( (coe1 `  G ) `  ( n  -  k
) ) )
2928eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( c  =  ( n  -  k )  ->  (
( (coe1 `  G ) `  c )  =  .0.  <->  ( (coe1 `  G ) `  ( n  -  k
) )  =  .0.  ) )
3029rspcv 3305 . . . . . . . . . . . . . . . . 17  |-  ( ( n  -  k )  e.  NN  ->  ( A. c  e.  NN  ( (coe1 `  G ) `  c )  =  .0. 
->  ( (coe1 `  G ) `  ( n  -  k
) )  =  .0.  ) )
3127, 30syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  ( A. c  e.  NN  (
(coe1 `  G ) `  c )  =  .0. 
->  ( (coe1 `  G ) `  ( n  -  k
) )  =  .0.  ) )
32 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (coe1 `  G ) `  ( n  -  k
) )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  ( ( (coe1 `  F ) `  k ) ( .r
`  R )  .0.  ) )
33 simpll 790 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 ) )  ->  R  e.  Ring )
34 simpl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F  e.  B  /\  G  e.  B )  ->  F  e.  B )
3534adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  F  e.  B )
36 elfznn0 12433 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
3736adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN0 )
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  k  e.  NN0 )
39 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (coe1 `  F
)  =  (coe1 `  F
)
40 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  R )  =  (
Base `  R )
4139, 4, 1, 40coe1fvalcl 19582 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  e.  B  /\  k  e.  NN0 )  -> 
( (coe1 `  F ) `  k )  e.  (
Base `  R )
)
4235, 38, 41syl2an 494 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 ) )  ->  (
(coe1 `  F ) `  k )  e.  (
Base `  R )
)
43 cply1mul.0 . . . . . . . . . . . . . . . . . . . . . 22  |-  .0.  =  ( 0g `  R )
4440, 3, 43ringrz 18588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  (
(coe1 `  F ) `  k )  e.  (
Base `  R )
)  ->  ( (
(coe1 `  F ) `  k ) ( .r
`  R )  .0.  )  =  .0.  )
4533, 42, 44syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 ) )  ->  (
( (coe1 `  F ) `  k ) ( .r
`  R )  .0.  )  =  .0.  )
4632, 45sylan9eqr 2678 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  ( ( n  e.  NN  /\  k  e.  ( 0 ... n
) )  /\  k  =  0 ) )  /\  ( (coe1 `  G
) `  ( n  -  k ) )  =  .0.  )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
4746ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 ) )  ->  (
( (coe1 `  G ) `  ( n  -  k
) )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
)
4847expcom 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( (
(coe1 `  G ) `  ( n  -  k
) )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) )
4948com23 86 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  /\  k  =  0 )  ->  ( (
(coe1 `  G ) `  ( n  -  k
) )  =  .0. 
->  ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) )
5031, 49syldc 48 . . . . . . . . . . . . . . 15  |-  ( A. c  e.  NN  (
(coe1 `  G ) `  c )  =  .0. 
->  ( ( ( n  e.  NN  /\  k  e.  ( 0 ... n
) )  /\  k  =  0 )  -> 
( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) )
5150expd 452 . . . . . . . . . . . . . 14  |-  ( A. c  e.  NN  (
(coe1 `  G ) `  c )  =  .0. 
->  ( ( n  e.  NN  /\  k  e.  ( 0 ... n
) )  ->  (
k  =  0  -> 
( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) )
5251com24 95 . . . . . . . . . . . . 13  |-  ( A. c  e.  NN  (
(coe1 `  G ) `  c )  =  .0. 
->  ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( k  =  0  ->  ( ( n  e.  NN  /\  k  e.  ( 0 ... n
) )  ->  (
( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( n  -  k
) ) )  =  .0.  ) ) ) )
5352adantl 482 . . . . . . . . . . . 12  |-  ( ( A. c  e.  NN  ( (coe1 `  F ) `  c )  =  .0. 
/\  A. c  e.  NN  ( (coe1 `  G ) `  c )  =  .0.  )  ->  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( k  =  0  ->  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) ) )
5453com13 88 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  ->  (
( A. c  e.  NN  ( (coe1 `  F
) `  c )  =  .0.  /\  A. c  e.  NN  ( (coe1 `  G
) `  c )  =  .0.  )  ->  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) ) )
55 df-ne 2795 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =/=  0  <->  -.  k  =  0 )
5655biimpri 218 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( -.  k  =  0  -> 
k  =/=  0 )
5756, 36anim12ci 591 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( -.  k  =  0  /\  k  e.  ( 0 ... n ) )  ->  ( k  e.  NN0  /\  k  =/=  0 ) )
58 elnnne0 11306 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  NN  <->  ( k  e.  NN0  /\  k  =/=  0 ) )
5957, 58sylibr 224 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( -.  k  =  0  /\  k  e.  ( 0 ... n ) )  ->  k  e.  NN )
60 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  =  k  ->  (
(coe1 `  F ) `  c )  =  ( (coe1 `  F ) `  k ) )
6160eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( c  =  k  ->  (
( (coe1 `  F ) `  c )  =  .0.  <->  ( (coe1 `  F ) `  k )  =  .0.  ) )
6261rspcv 3305 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN  ->  ( A. c  e.  NN  ( (coe1 `  F ) `  c )  =  .0. 
->  ( (coe1 `  F ) `  k )  =  .0.  ) )
6359, 62syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -.  k  =  0  /\  k  e.  ( 0 ... n ) )  ->  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
->  ( (coe1 `  F ) `  k )  =  .0.  ) )
64 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( (coe1 `  F ) `  k )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  (  .0.  ( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) )
65 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  k  e.  ( 0 ... n
) )  ->  R  e.  Ring )
664eleq2i 2693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( G  e.  B  <->  G  e.  ( Base `  P )
)
6766biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( G  e.  B  ->  G  e.  ( Base `  P
) )
6867adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F  e.  B  /\  G  e.  B )  ->  G  e.  ( Base `  P ) )
6968adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  G  e.  ( Base `  P )
)
70 fznn0sub 12373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
71 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  (coe1 `  G
)  =  (coe1 `  G
)
72 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( Base `  P )  =  (
Base `  P )
7371, 72, 1, 40coe1fvalcl 19582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( G  e.  ( Base `  P )  /\  (
n  -  k )  e.  NN0 )  -> 
( (coe1 `  G ) `  ( n  -  k
) )  e.  (
Base `  R )
)
7469, 70, 73syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  k  e.  ( 0 ... n
) )  ->  (
(coe1 `  G ) `  ( n  -  k
) )  e.  (
Base `  R )
)
7540, 3, 43ringlz 18587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( R  e.  Ring  /\  (
(coe1 `  G ) `  ( n  -  k
) )  e.  (
Base `  R )
)  ->  (  .0.  ( .r `  R ) ( (coe1 `  G ) `  ( n  -  k
) ) )  =  .0.  )
7665, 74, 75syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  k  e.  ( 0 ... n
) )  ->  (  .0.  ( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
7764, 76sylan9eqr 2678 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  k  e.  ( 0 ... n ) )  /\  ( (coe1 `  F
) `  k )  =  .0.  )  ->  (
( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( n  -  k
) ) )  =  .0.  )
7877ex 450 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  k  e.  ( 0 ... n
) )  ->  (
( (coe1 `  F ) `  k )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
)
7978ex 450 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( k  e.  ( 0 ... n
)  ->  ( (
(coe1 `  F ) `  k )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) )
8079com23 86 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( (
(coe1 `  F ) `  k )  =  .0. 
->  ( k  e.  ( 0 ... n )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) )
8180a1dd 50 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( (
(coe1 `  F ) `  k )  =  .0. 
->  ( n  e.  NN  ->  ( k  e.  ( 0 ... n )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) ) )
8281com14 96 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 0 ... n )  ->  (
( (coe1 `  F ) `  k )  =  .0. 
->  ( n  e.  NN  ->  ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) )
8382adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( -.  k  =  0  /\  k  e.  ( 0 ... n ) )  ->  ( (
(coe1 `  F ) `  k )  =  .0. 
->  ( n  e.  NN  ->  ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) )
8463, 83syld 47 . . . . . . . . . . . . . . . . . 18  |-  ( ( -.  k  =  0  /\  k  e.  ( 0 ... n ) )  ->  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
->  ( n  e.  NN  ->  ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) )
8584com24 95 . . . . . . . . . . . . . . . . 17  |-  ( ( -.  k  =  0  /\  k  e.  ( 0 ... n ) )  ->  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( n  e.  NN  ->  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) )
8685ex 450 . . . . . . . . . . . . . . . 16  |-  ( -.  k  =  0  -> 
( k  e.  ( 0 ... n )  ->  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( n  e.  NN  ->  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) ) )
8786com14 96 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
k  e.  ( 0 ... n )  -> 
( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( -.  k  =  0  ->  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) ) )
8887imp 445 . . . . . . . . . . . . . 14  |-  ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( -.  k  =  0  ->  ( A. c  e.  NN  ( (coe1 `  F ) `  c )  =  .0. 
->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) )  =  .0.  )
) ) )
8988com14 96 . . . . . . . . . . . . 13  |-  ( A. c  e.  NN  (
(coe1 `  F ) `  c )  =  .0. 
->  ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( -.  k  =  0  ->  ( (
n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) ) )
9089adantr 481 . . . . . . . . . . . 12  |-  ( ( A. c  e.  NN  ( (coe1 `  F ) `  c )  =  .0. 
/\  A. c  e.  NN  ( (coe1 `  G ) `  c )  =  .0.  )  ->  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( -.  k  =  0  ->  ( ( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) ) )
9190com13 88 . . . . . . . . . . 11  |-  ( -.  k  =  0  -> 
( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  -> 
( ( A. c  e.  NN  ( (coe1 `  F
) `  c )  =  .0.  /\  A. c  e.  NN  ( (coe1 `  G
) `  c )  =  .0.  )  ->  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) ) )
9254, 91pm2.61i 176 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( ( A. c  e.  NN  ( (coe1 `  F ) `  c )  =  .0. 
/\  A. c  e.  NN  ( (coe1 `  G ) `  c )  =  .0.  )  ->  ( (
n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) )
9320, 92syl5bi 232 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  )  ->  (
( n  e.  NN  /\  k  e.  ( 0 ... n ) )  ->  ( ( (coe1 `  F ) `  k
) ( .r `  R ) ( (coe1 `  G ) `  (
n  -  k ) ) )  =  .0.  ) ) )
9493imp 445 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  -> 
( ( n  e.  NN  /\  k  e.  ( 0 ... n
) )  ->  (
( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( n  -  k
) ) )  =  .0.  ) )
9594impl 650 . . . . . . 7  |-  ( ( ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  /\  A. c  e.  NN  ( ( (coe1 `  F ) `  c
)  =  .0.  /\  ( (coe1 `  G ) `  c )  =  .0.  ) )  /\  n  e.  NN )  /\  k  e.  ( 0 ... n
) )  ->  (
( (coe1 `  F ) `  k ) ( .r
`  R ) ( (coe1 `  G ) `  ( n  -  k
) ) )  =  .0.  )
9695mpteq2dva 4744 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  ( k  e.  ( 0 ... n ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) )  =  ( k  e.  ( 0 ... n )  |->  .0.  ) )
9796oveq2d 6666 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  ( ( (coe1 `  F
) `  k )
( .r `  R
) ( (coe1 `  G
) `  ( n  -  k ) ) ) ) )  =  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  .0.  ) ) )
98 ringmnd 18556 . . . . . . . . 9  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
99 ovexd 6680 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( 0 ... n )  e. 
_V )
10043gsumz 17374 . . . . . . . . 9  |-  ( ( R  e.  Mnd  /\  ( 0 ... n
)  e.  _V )  ->  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  .0.  ) )  =  .0.  )
10198, 99, 100syl2anc 693 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( R 
gsumg  ( k  e.  ( 0 ... n ) 
|->  .0.  ) )  =  .0.  )
102101adantr 481 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( R  gsumg  ( k  e.  ( 0 ... n )  |->  .0.  ) )  =  .0.  )
103102adantr 481 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  -> 
( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  .0.  ) )  =  .0.  )
104103adantr 481 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  ( R  gsumg  ( k  e.  ( 0 ... n ) 
|->  .0.  ) )  =  .0.  )
10519, 97, 1043eqtrd 2660 . . . 4  |-  ( ( ( ( R  e. 
Ring  /\  ( F  e.  B  /\  G  e.  B ) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  /\  n  e.  NN )  ->  ( (coe1 `  ( F  .X.  G ) ) `  n )  =  .0.  )
106105ralrimiva 2966 . . 3  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  ->  A. n  e.  NN  ( (coe1 `  ( F  .X.  G ) ) `  n )  =  .0.  )
107 fveq2 6191 . . . . 5  |-  ( c  =  n  ->  (
(coe1 `  ( F  .X.  G ) ) `  c )  =  ( (coe1 `  ( F  .X.  G ) ) `  n ) )
108107eqeq1d 2624 . . . 4  |-  ( c  =  n  ->  (
( (coe1 `  ( F  .X.  G ) ) `  c )  =  .0.  <->  ( (coe1 `  ( F  .X.  G ) ) `  n )  =  .0.  ) )
109108cbvralv 3171 . . 3  |-  ( A. c  e.  NN  (
(coe1 `  ( F  .X.  G ) ) `  c )  =  .0.  <->  A. n  e.  NN  (
(coe1 `  ( F  .X.  G ) ) `  n )  =  .0.  )
110106, 109sylibr 224 . 2  |-  ( ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B
) )  /\  A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  ) )  ->  A. c  e.  NN  ( (coe1 `  ( F  .X.  G ) ) `  c )  =  .0.  )
111110ex 450 1  |-  ( ( R  e.  Ring  /\  ( F  e.  B  /\  G  e.  B )
)  ->  ( A. c  e.  NN  (
( (coe1 `  F ) `  c )  =  .0. 
/\  ( (coe1 `  G
) `  c )  =  .0.  )  ->  A. c  e.  NN  ( (coe1 `  ( F  .X.  G ) ) `
 c )  =  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   0cc0 9936    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553
This theorem is referenced by:  cpmatmcllem  20523
  Copyright terms: Public domain W3C validator