Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem7 Structured version   Visualization version   GIF version

Theorem cvmliftlem7 31273
Description: Lemma for cvmlift 31281. Prove by induction that every 𝑄 function is well-defined (we can immediately follow this theorem with cvmliftlem6 31272 to show functionality and lifting of 𝑄). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem7 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem7
Dummy variables 𝑦 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssp1 12384 . . . 4 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
2 cvmliftlem.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
32nncnd 11036 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
43adantr 481 . . . . . 6 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑁 ∈ ℂ)
5 ax-1cn 9994 . . . . . 6 1 ∈ ℂ
6 npcan 10290 . . . . . 6 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
74, 5, 6sylancl 694 . . . . 5 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑁 − 1) + 1) = 𝑁)
87oveq2d 6666 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
91, 8syl5sseq 3653 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
10 simpr 477 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → 𝑀 ∈ (1...𝑁))
11 elfzelz 12342 . . . . 5 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℤ)
122nnzd 11481 . . . . 5 (𝜑𝑁 ∈ ℤ)
13 elfzm1b 12418 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1411, 12, 13syl2anr 495 . . . 4 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
1510, 14mpbid 222 . . 3 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
169, 15sseldd 3604 . 2 ((𝜑𝑀 ∈ (1...𝑁)) → (𝑀 − 1) ∈ (0...𝑁))
17 elfznn0 12433 . . . 4 ((𝑀 − 1) ∈ (0...𝑁) → (𝑀 − 1) ∈ ℕ0)
1817adantl 482 . . 3 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → (𝑀 − 1) ∈ ℕ0)
19 eleq1 2689 . . . . . . 7 (𝑦 = 0 → (𝑦 ∈ (0...𝑁) ↔ 0 ∈ (0...𝑁)))
20 fveq2 6191 . . . . . . . . 9 (𝑦 = 0 → (𝑄𝑦) = (𝑄‘0))
21 oveq1 6657 . . . . . . . . 9 (𝑦 = 0 → (𝑦 / 𝑁) = (0 / 𝑁))
2220, 21fveq12d 6197 . . . . . . . 8 (𝑦 = 0 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘0)‘(0 / 𝑁)))
2321fveq2d 6195 . . . . . . . . . 10 (𝑦 = 0 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(0 / 𝑁)))
2423sneqd 4189 . . . . . . . . 9 (𝑦 = 0 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(0 / 𝑁))})
2524imaeq2d 5466 . . . . . . . 8 (𝑦 = 0 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(0 / 𝑁))}))
2622, 25eleq12d 2695 . . . . . . 7 (𝑦 = 0 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
2719, 26imbi12d 334 . . . . . 6 (𝑦 = 0 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))))
2827imbi2d 330 . . . . 5 (𝑦 = 0 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))))
29 eleq1 2689 . . . . . . 7 (𝑦 = 𝑛 → (𝑦 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...𝑁)))
30 fveq2 6191 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑄𝑦) = (𝑄𝑛))
31 oveq1 6657 . . . . . . . . 9 (𝑦 = 𝑛 → (𝑦 / 𝑁) = (𝑛 / 𝑁))
3230, 31fveq12d 6197 . . . . . . . 8 (𝑦 = 𝑛 → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
3331fveq2d 6195 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
3433sneqd 4189 . . . . . . . . 9 (𝑦 = 𝑛 → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
3534imaeq2d 5466 . . . . . . . 8 (𝑦 = 𝑛 → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
3632, 35eleq12d 2695 . . . . . . 7 (𝑦 = 𝑛 → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))
3729, 36imbi12d 334 . . . . . 6 (𝑦 = 𝑛 → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
3837imbi2d 330 . . . . 5 (𝑦 = 𝑛 → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})))))
39 eleq1 2689 . . . . . . 7 (𝑦 = (𝑛 + 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑛 + 1) ∈ (0...𝑁)))
40 fveq2 6191 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑄𝑦) = (𝑄‘(𝑛 + 1)))
41 oveq1 6657 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → (𝑦 / 𝑁) = ((𝑛 + 1) / 𝑁))
4240, 41fveq12d 6197 . . . . . . . 8 (𝑦 = (𝑛 + 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)))
4341fveq2d 6195 . . . . . . . . . 10 (𝑦 = (𝑛 + 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
4443sneqd 4189 . . . . . . . . 9 (𝑦 = (𝑛 + 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑛 + 1) / 𝑁))})
4544imaeq2d 5466 . . . . . . . 8 (𝑦 = (𝑛 + 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
4642, 45eleq12d 2695 . . . . . . 7 (𝑦 = (𝑛 + 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
4739, 46imbi12d 334 . . . . . 6 (𝑦 = (𝑛 + 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
4847imbi2d 330 . . . . 5 (𝑦 = (𝑛 + 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
49 eleq1 2689 . . . . . . 7 (𝑦 = (𝑀 − 1) → (𝑦 ∈ (0...𝑁) ↔ (𝑀 − 1) ∈ (0...𝑁)))
50 fveq2 6191 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑄𝑦) = (𝑄‘(𝑀 − 1)))
51 oveq1 6657 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → (𝑦 / 𝑁) = ((𝑀 − 1) / 𝑁))
5250, 51fveq12d 6197 . . . . . . . 8 (𝑦 = (𝑀 − 1) → ((𝑄𝑦)‘(𝑦 / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
5351fveq2d 6195 . . . . . . . . . 10 (𝑦 = (𝑀 − 1) → (𝐺‘(𝑦 / 𝑁)) = (𝐺‘((𝑀 − 1) / 𝑁)))
5453sneqd 4189 . . . . . . . . 9 (𝑦 = (𝑀 − 1) → {(𝐺‘(𝑦 / 𝑁))} = {(𝐺‘((𝑀 − 1) / 𝑁))})
5554imaeq2d 5466 . . . . . . . 8 (𝑦 = (𝑀 − 1) → (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) = (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
5652, 55eleq12d 2695 . . . . . . 7 (𝑦 = (𝑀 − 1) → (((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}) ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
5749, 56imbi12d 334 . . . . . 6 (𝑦 = (𝑀 − 1) → ((𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))})) ↔ ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
5857imbi2d 330 . . . . 5 (𝑦 = (𝑀 − 1) → ((𝜑 → (𝑦 ∈ (0...𝑁) → ((𝑄𝑦)‘(𝑦 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑦 / 𝑁))}))) ↔ (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))))
59 cvmliftlem.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
60 cvmliftlem.b . . . . . . . . . . 11 𝐵 = 𝐶
61 cvmliftlem.x . . . . . . . . . . 11 𝑋 = 𝐽
62 cvmliftlem.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
63 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
64 cvmliftlem.p . . . . . . . . . . 11 (𝜑𝑃𝐵)
65 cvmliftlem.e . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) = (𝐺‘0))
66 cvmliftlem.t . . . . . . . . . . 11 (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
67 cvmliftlem.a . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
68 cvmliftlem.l . . . . . . . . . . 11 𝐿 = (topGen‘ran (,))
69 cvmliftlem.q . . . . . . . . . . 11 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
7059, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69cvmliftlem4 31270 . . . . . . . . . 10 (𝑄‘0) = {⟨0, 𝑃⟩}
7170a1i 11 . . . . . . . . 9 (𝜑 → (𝑄‘0) = {⟨0, 𝑃⟩})
722nnne0d 11065 . . . . . . . . . 10 (𝜑𝑁 ≠ 0)
733, 72div0d 10800 . . . . . . . . 9 (𝜑 → (0 / 𝑁) = 0)
7471, 73fveq12d 6197 . . . . . . . 8 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = ({⟨0, 𝑃⟩}‘0))
75 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
76 fvsng 6447 . . . . . . . . 9 ((0 ∈ ℕ0𝑃𝐵) → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7775, 64, 76sylancr 695 . . . . . . . 8 (𝜑 → ({⟨0, 𝑃⟩}‘0) = 𝑃)
7874, 77eqtrd 2656 . . . . . . 7 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) = 𝑃)
7973fveq2d 6195 . . . . . . . . 9 (𝜑 → (𝐺‘(0 / 𝑁)) = (𝐺‘0))
8065, 79eqtr4d 2659 . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘(0 / 𝑁)))
81 cvmcn 31244 . . . . . . . . . . 11 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
8262, 81syl 17 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 Cn 𝐽))
8360, 61cnf 21050 . . . . . . . . . 10 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
84 ffn 6045 . . . . . . . . . 10 (𝐹:𝐵𝑋𝐹 Fn 𝐵)
8582, 83, 843syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐵)
86 fniniseg 6338 . . . . . . . . 9 (𝐹 Fn 𝐵 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8785, 86syl 17 . . . . . . . 8 (𝜑 → (𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}) ↔ (𝑃𝐵 ∧ (𝐹𝑃) = (𝐺‘(0 / 𝑁)))))
8864, 80, 87mpbir2and 957 . . . . . . 7 (𝜑𝑃 ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
8978, 88eqeltrd 2701 . . . . . 6 (𝜑 → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))}))
9089a1d 25 . . . . 5 (𝜑 → (0 ∈ (0...𝑁) → ((𝑄‘0)‘(0 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(0 / 𝑁))})))
91 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℕ0)
92 nn0uz 11722 . . . . . . . . . . . 12 0 = (ℤ‘0)
9391, 92syl6eleq 2711 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ (ℤ‘0))
9493adantl 482 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ (ℤ‘0))
95 peano2fzr 12354 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘0) ∧ (𝑛 + 1) ∈ (0...𝑁)) → 𝑛 ∈ (0...𝑁))
9695ex 450 . . . . . . . . . 10 (𝑛 ∈ (ℤ‘0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9794, 96syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → 𝑛 ∈ (0...𝑁)))
9897imim1d 82 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))))
99 eqid 2622 . . . . . . . . . . . . . . 15 ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))
100 simprlr 803 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (0...𝑁))
101 elfzle2 12345 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ (0...𝑁) → (𝑛 + 1) ≤ 𝑁)
102100, 101syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ≤ 𝑁)
103 simprll 802 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℕ0)
104 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
105103, 104syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℕ)
106 nnuz 11723 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
107105, 106syl6eleq 2711 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (ℤ‘1))
10812adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℤ)
109 elfz5 12334 . . . . . . . . . . . . . . . . 17 (((𝑛 + 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
110107, 108, 109syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) ∈ (1...𝑁) ↔ (𝑛 + 1) ≤ 𝑁))
111102, 110mpbird 247 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ (1...𝑁))
112 simprr 796 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
113103nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℂ)
114 pncan 10287 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
115113, 5, 114sylancl 694 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) − 1) = 𝑛)
116115fveq2d 6195 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘((𝑛 + 1) − 1)) = (𝑄𝑛))
117115oveq1d 6665 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑛 + 1) − 1) / 𝑁) = (𝑛 / 𝑁))
118116, 117fveq12d 6197 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) = ((𝑄𝑛)‘(𝑛 / 𝑁)))
119117fveq2d 6195 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺‘(((𝑛 + 1) − 1) / 𝑁)) = (𝐺‘(𝑛 / 𝑁)))
120119sneqd 4189 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))} = {(𝐺‘(𝑛 / 𝑁))})
121120imaeq2d 5466 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}) = (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))
122112, 118, 1213eltr4d 2716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘((𝑛 + 1) − 1))‘(((𝑛 + 1) − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘(((𝑛 + 1) − 1) / 𝑁))}))
12359, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122cvmliftlem6 31272 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))))
124123simpld 475 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
125103nn0red 11352 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 ∈ ℝ)
1262adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℕ)
127125, 126nndivred 11069 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ)
128127rexrd 10089 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ∈ ℝ*)
129 peano2re 10209 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
130125, 129syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 + 1) ∈ ℝ)
131130, 126nndivred 11069 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ)
132131rexrd 10089 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ℝ*)
133125ltp1d 10954 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑛 < (𝑛 + 1))
134126nnred 11035 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝑁 ∈ ℝ)
135126nngt0d 11064 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 0 < 𝑁)
136 ltdiv1 10887 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑛 + 1) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
137125, 130, 134, 135, 136syl112anc 1330 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 < (𝑛 + 1) ↔ (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁)))
138133, 137mpbid 222 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) < ((𝑛 + 1) / 𝑁))
139127, 131, 138ltled 10185 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁))
140 ubicc2 12289 . . . . . . . . . . . . . . 15 (((𝑛 / 𝑁) ∈ ℝ* ∧ ((𝑛 + 1) / 𝑁) ∈ ℝ* ∧ (𝑛 / 𝑁) ≤ ((𝑛 + 1) / 𝑁)) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
141128, 132, 139, 140syl3anc 1326 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
142117oveq1d 6665 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)) = ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))
143141, 142eleqtrrd 2704 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑛 + 1) / 𝑁) ∈ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁)))
144124, 143ffvelrnd 6360 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵)
145123simprd 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))))
146142reseq2d 5396 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐺 ↾ ((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
147145, 146eqtrd 2656 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹 ∘ (𝑄‘(𝑛 + 1))) = (𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))))
148147fveq1d 6193 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)))
149142feq2d 6031 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1)):((((𝑛 + 1) − 1) / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ↔ (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵))
150124, 149mpbid 222 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵)
151 fvco3 6275 . . . . . . . . . . . . . 14 (((𝑄‘(𝑛 + 1)):((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))⟶𝐵 ∧ ((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
152150, 141, 151syl2anc 693 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐹 ∘ (𝑄‘(𝑛 + 1)))‘((𝑛 + 1) / 𝑁)) = (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))))
153 fvres 6207 . . . . . . . . . . . . . 14 (((𝑛 + 1) / 𝑁) ∈ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
154141, 153syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝐺 ↾ ((𝑛 / 𝑁)[,]((𝑛 + 1) / 𝑁)))‘((𝑛 + 1) / 𝑁)) = (𝐺‘((𝑛 + 1) / 𝑁)))
155148, 152, 1543eqtr3d 2664 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))
15685adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → 𝐹 Fn 𝐵)
157 fniniseg 6338 . . . . . . . . . . . . 13 (𝐹 Fn 𝐵 → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
158156, 157syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}) ↔ (((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ 𝐵 ∧ (𝐹‘((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁))) = (𝐺‘((𝑛 + 1) / 𝑁)))))
159144, 155, 158mpbir2and 957 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁)) ∧ ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))
160159expr 643 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ ℕ0 ∧ (𝑛 + 1) ∈ (0...𝑁))) → (((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))
161160expr 643 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 + 1) ∈ (0...𝑁) → (((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
162161a2d 29 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 + 1) ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
16398, 162syld 47 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))}))))
164163expcom 451 . . . . . 6 (𝑛 ∈ ℕ0 → (𝜑 → ((𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))})) → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
165164a2d 29 . . . . 5 (𝑛 ∈ ℕ0 → ((𝜑 → (𝑛 ∈ (0...𝑁) → ((𝑄𝑛)‘(𝑛 / 𝑁)) ∈ (𝐹 “ {(𝐺‘(𝑛 / 𝑁))}))) → (𝜑 → ((𝑛 + 1) ∈ (0...𝑁) → ((𝑄‘(𝑛 + 1))‘((𝑛 + 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑛 + 1) / 𝑁))})))))
16628, 38, 48, 58, 90, 165nn0ind 11472 . . . 4 ((𝑀 − 1) ∈ ℕ0 → (𝜑 → ((𝑀 − 1) ∈ (0...𝑁) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))))
167166impd 447 . . 3 ((𝑀 − 1) ∈ ℕ0 → ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))})))
16818, 167mpcom 38 . 2 ((𝜑 ∧ (𝑀 − 1) ∈ (0...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
16916, 168syldan 487 1 ((𝜑𝑀 ∈ (1...𝑁)) → ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ (𝐹 “ {(𝐺‘((𝑀 − 1) / 𝑁))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  crio 6610  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  (,)cioo 12175  [,]cicc 12178  ...cfz 12326  seqcseq 12801  t crest 16081  topGenctg 16098   Cn ccn 21028  Homeochmeo 21556  IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-hmeo 21558  df-ii 22680  df-cvm 31238
This theorem is referenced by:  cvmliftlem8  31274  cvmliftlem9  31275  cvmliftlem10  31276  cvmliftlem13  31278
  Copyright terms: Public domain W3C validator