Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem7 Structured version   Visualization version   Unicode version

Theorem cvmliftlem7 31273
Description: Lemma for cvmlift 31281. Prove by induction that every  Q function is well-defined (we can immediately follow this theorem with cvmliftlem6 31272 to show functionality and lifting of  Q). (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
cvmliftlem.b  |-  B  = 
U. C
cvmliftlem.x  |-  X  = 
U. J
cvmliftlem.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmliftlem.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
cvmliftlem.p  |-  ( ph  ->  P  e.  B )
cvmliftlem.e  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
cvmliftlem.n  |-  ( ph  ->  N  e.  NN )
cvmliftlem.t  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
cvmliftlem.a  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
cvmliftlem.l  |-  L  =  ( topGen `  ran  (,) )
cvmliftlem.q  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
cvmliftlem5.3  |-  W  =  ( ( ( M  -  1 )  /  N ) [,] ( M  /  N ) )
Assertion
Ref Expression
cvmliftlem7  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) )
Distinct variable groups:    v, b,
z, B    j, b,
k, m, s, u, x, F, v, z   
z, L    M, b,
j, k, m, s, u, v, x, z    P, b, k, m, u, v, x, z    C, b, j, k, s, u, v, z    ph, j,
s, x, z    N, b, k, m, u, v, x, z    S, b, j, k, s, u, v, x, z    j, X    G, b, j, k, m, s, u, v, x, z    T, b, j, k, m, s, u, v, x, z    J, b, j, k, s, u, v, x, z    Q, b, k, m, u, v, x, z    k, W, m, x, z
Allowed substitution hints:    ph( v, u, k, m, b)    B( x, u, j, k, m, s)    C( x, m)    P( j, s)    Q( j, s)    S( m)    J( m)    L( x, v, u, j, k, m, s, b)    N( j, s)    W( v, u, j, s, b)    X( x, z, v, u, k, m, s, b)

Proof of Theorem cvmliftlem7
Dummy variables  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzssp1 12384 . . . 4  |-  ( 0 ... ( N  - 
1 ) )  C_  ( 0 ... (
( N  -  1 )  +  1 ) )
2 cvmliftlem.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
32nncnd 11036 . . . . . . 7  |-  ( ph  ->  N  e.  CC )
43adantr 481 . . . . . 6  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  N  e.  CC )
5 ax-1cn 9994 . . . . . 6  |-  1  e.  CC
6 npcan 10290 . . . . . 6  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
74, 5, 6sylancl 694 . . . . 5  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( N  -  1 )  +  1 )  =  N )
87oveq2d 6666 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
0 ... ( ( N  -  1 )  +  1 ) )  =  ( 0 ... N
) )
91, 8syl5sseq 3653 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
0 ... ( N  - 
1 ) )  C_  ( 0 ... N
) )
10 simpr 477 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  M  e.  ( 1 ... N
) )
11 elfzelz 12342 . . . . 5  |-  ( M  e.  ( 1 ... N )  ->  M  e.  ZZ )
122nnzd 11481 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
13 elfzm1b 12418 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  e.  ( 1 ... N )  <-> 
( M  -  1 )  e.  ( 0 ... ( N  - 
1 ) ) ) )
1411, 12, 13syl2anr 495 . . . 4  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  e.  ( 1 ... N )  <->  ( M  -  1 )  e.  ( 0 ... ( N  -  1 ) ) ) )
1510, 14mpbid 222 . . 3  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  -  1 )  e.  ( 0 ... ( N  -  1 ) ) )
169, 15sseldd 3604 . 2  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  ( M  -  1 )  e.  ( 0 ... N ) )
17 elfznn0 12433 . . . 4  |-  ( ( M  -  1 )  e.  ( 0 ... N )  ->  ( M  -  1 )  e.  NN0 )
1817adantl 482 . . 3  |-  ( (
ph  /\  ( M  -  1 )  e.  ( 0 ... N
) )  ->  ( M  -  1 )  e.  NN0 )
19 eleq1 2689 . . . . . . 7  |-  ( y  =  0  ->  (
y  e.  ( 0 ... N )  <->  0  e.  ( 0 ... N
) ) )
20 fveq2 6191 . . . . . . . . 9  |-  ( y  =  0  ->  ( Q `  y )  =  ( Q ` 
0 ) )
21 oveq1 6657 . . . . . . . . 9  |-  ( y  =  0  ->  (
y  /  N )  =  ( 0  /  N ) )
2220, 21fveq12d 6197 . . . . . . . 8  |-  ( y  =  0  ->  (
( Q `  y
) `  ( y  /  N ) )  =  ( ( Q ` 
0 ) `  (
0  /  N ) ) )
2321fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  0  ->  ( G `  ( y  /  N ) )  =  ( G `  (
0  /  N ) ) )
2423sneqd 4189 . . . . . . . . 9  |-  ( y  =  0  ->  { ( G `  ( y  /  N ) ) }  =  { ( G `  ( 0  /  N ) ) } )
2524imaeq2d 5466 . . . . . . . 8  |-  ( y  =  0  ->  ( `' F " { ( G `  ( y  /  N ) ) } )  =  ( `' F " { ( G `  ( 0  /  N ) ) } ) )
2622, 25eleq12d 2695 . . . . . . 7  |-  ( y  =  0  ->  (
( ( Q `  y ) `  (
y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } )  <->  ( ( Q `  0 ) `  ( 0  /  N
) )  e.  ( `' F " { ( G `  ( 0  /  N ) ) } ) ) )
2719, 26imbi12d 334 . . . . . 6  |-  ( y  =  0  ->  (
( y  e.  ( 0 ... N )  ->  ( ( Q `
 y ) `  ( y  /  N
) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } ) )  <->  ( 0  e.  ( 0 ... N )  ->  (
( Q `  0
) `  ( 0  /  N ) )  e.  ( `' F " { ( G `  ( 0  /  N
) ) } ) ) ) )
2827imbi2d 330 . . . . 5  |-  ( y  =  0  ->  (
( ph  ->  ( y  e.  ( 0 ... N )  ->  (
( Q `  y
) `  ( y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N
) ) } ) ) )  <->  ( ph  ->  ( 0  e.  ( 0 ... N )  ->  ( ( Q `
 0 ) `  ( 0  /  N
) )  e.  ( `' F " { ( G `  ( 0  /  N ) ) } ) ) ) ) )
29 eleq1 2689 . . . . . . 7  |-  ( y  =  n  ->  (
y  e.  ( 0 ... N )  <->  n  e.  ( 0 ... N
) ) )
30 fveq2 6191 . . . . . . . . 9  |-  ( y  =  n  ->  ( Q `  y )  =  ( Q `  n ) )
31 oveq1 6657 . . . . . . . . 9  |-  ( y  =  n  ->  (
y  /  N )  =  ( n  /  N ) )
3230, 31fveq12d 6197 . . . . . . . 8  |-  ( y  =  n  ->  (
( Q `  y
) `  ( y  /  N ) )  =  ( ( Q `  n ) `  (
n  /  N ) ) )
3331fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  n  ->  ( G `  ( y  /  N ) )  =  ( G `  (
n  /  N ) ) )
3433sneqd 4189 . . . . . . . . 9  |-  ( y  =  n  ->  { ( G `  ( y  /  N ) ) }  =  { ( G `  ( n  /  N ) ) } )
3534imaeq2d 5466 . . . . . . . 8  |-  ( y  =  n  ->  ( `' F " { ( G `  ( y  /  N ) ) } )  =  ( `' F " { ( G `  ( n  /  N ) ) } ) )
3632, 35eleq12d 2695 . . . . . . 7  |-  ( y  =  n  ->  (
( ( Q `  y ) `  (
y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } )  <->  ( ( Q `  n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )
3729, 36imbi12d 334 . . . . . 6  |-  ( y  =  n  ->  (
( y  e.  ( 0 ... N )  ->  ( ( Q `
 y ) `  ( y  /  N
) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } ) )  <->  ( n  e.  ( 0 ... N
)  ->  ( ( Q `  n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) ) )
3837imbi2d 330 . . . . 5  |-  ( y  =  n  ->  (
( ph  ->  ( y  e.  ( 0 ... N )  ->  (
( Q `  y
) `  ( y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N
) ) } ) ) )  <->  ( ph  ->  ( n  e.  ( 0 ... N )  ->  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) ) ) )
39 eleq1 2689 . . . . . . 7  |-  ( y  =  ( n  + 
1 )  ->  (
y  e.  ( 0 ... N )  <->  ( n  +  1 )  e.  ( 0 ... N
) ) )
40 fveq2 6191 . . . . . . . . 9  |-  ( y  =  ( n  + 
1 )  ->  ( Q `  y )  =  ( Q `  ( n  +  1
) ) )
41 oveq1 6657 . . . . . . . . 9  |-  ( y  =  ( n  + 
1 )  ->  (
y  /  N )  =  ( ( n  +  1 )  /  N ) )
4240, 41fveq12d 6197 . . . . . . . 8  |-  ( y  =  ( n  + 
1 )  ->  (
( Q `  y
) `  ( y  /  N ) )  =  ( ( Q `  ( n  +  1
) ) `  (
( n  +  1 )  /  N ) ) )
4341fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  ( n  + 
1 )  ->  ( G `  ( y  /  N ) )  =  ( G `  (
( n  +  1 )  /  N ) ) )
4443sneqd 4189 . . . . . . . . 9  |-  ( y  =  ( n  + 
1 )  ->  { ( G `  ( y  /  N ) ) }  =  { ( G `  ( ( n  +  1 )  /  N ) ) } )
4544imaeq2d 5466 . . . . . . . 8  |-  ( y  =  ( n  + 
1 )  ->  ( `' F " { ( G `  ( y  /  N ) ) } )  =  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) )
4642, 45eleq12d 2695 . . . . . . 7  |-  ( y  =  ( n  + 
1 )  ->  (
( ( Q `  y ) `  (
y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } )  <->  ( ( Q `  ( n  +  1 ) ) `
 ( ( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  + 
1 )  /  N
) ) } ) ) )
4739, 46imbi12d 334 . . . . . 6  |-  ( y  =  ( n  + 
1 )  ->  (
( y  e.  ( 0 ... N )  ->  ( ( Q `
 y ) `  ( y  /  N
) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } ) )  <->  ( (
n  +  1 )  e.  ( 0 ... N )  ->  (
( Q `  (
n  +  1 ) ) `  ( ( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  + 
1 )  /  N
) ) } ) ) ) )
4847imbi2d 330 . . . . 5  |-  ( y  =  ( n  + 
1 )  ->  (
( ph  ->  ( y  e.  ( 0 ... N )  ->  (
( Q `  y
) `  ( y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N
) ) } ) ) )  <->  ( ph  ->  ( ( n  + 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) ) ) ) )
49 eleq1 2689 . . . . . . 7  |-  ( y  =  ( M  - 
1 )  ->  (
y  e.  ( 0 ... N )  <->  ( M  -  1 )  e.  ( 0 ... N
) ) )
50 fveq2 6191 . . . . . . . . 9  |-  ( y  =  ( M  - 
1 )  ->  ( Q `  y )  =  ( Q `  ( M  -  1
) ) )
51 oveq1 6657 . . . . . . . . 9  |-  ( y  =  ( M  - 
1 )  ->  (
y  /  N )  =  ( ( M  -  1 )  /  N ) )
5250, 51fveq12d 6197 . . . . . . . 8  |-  ( y  =  ( M  - 
1 )  ->  (
( Q `  y
) `  ( y  /  N ) )  =  ( ( Q `  ( M  -  1
) ) `  (
( M  -  1 )  /  N ) ) )
5351fveq2d 6195 . . . . . . . . . 10  |-  ( y  =  ( M  - 
1 )  ->  ( G `  ( y  /  N ) )  =  ( G `  (
( M  -  1 )  /  N ) ) )
5453sneqd 4189 . . . . . . . . 9  |-  ( y  =  ( M  - 
1 )  ->  { ( G `  ( y  /  N ) ) }  =  { ( G `  ( ( M  -  1 )  /  N ) ) } )
5554imaeq2d 5466 . . . . . . . 8  |-  ( y  =  ( M  - 
1 )  ->  ( `' F " { ( G `  ( y  /  N ) ) } )  =  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) } ) )
5652, 55eleq12d 2695 . . . . . . 7  |-  ( y  =  ( M  - 
1 )  ->  (
( ( Q `  y ) `  (
y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } )  <->  ( ( Q `  ( M  -  1 ) ) `
 ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) ) )
5749, 56imbi12d 334 . . . . . 6  |-  ( y  =  ( M  - 
1 )  ->  (
( y  e.  ( 0 ... N )  ->  ( ( Q `
 y ) `  ( y  /  N
) )  e.  ( `' F " { ( G `  ( y  /  N ) ) } ) )  <->  ( ( M  -  1 )  e.  ( 0 ... N )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) ) ) )
5857imbi2d 330 . . . . 5  |-  ( y  =  ( M  - 
1 )  ->  (
( ph  ->  ( y  e.  ( 0 ... N )  ->  (
( Q `  y
) `  ( y  /  N ) )  e.  ( `' F " { ( G `  ( y  /  N
) ) } ) ) )  <->  ( ph  ->  ( ( M  - 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) } ) ) ) ) )
59 cvmliftlem.1 . . . . . . . . . . 11  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )
Homeo ( Jt  k ) ) ) ) } )
60 cvmliftlem.b . . . . . . . . . . 11  |-  B  = 
U. C
61 cvmliftlem.x . . . . . . . . . . 11  |-  X  = 
U. J
62 cvmliftlem.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
63 cvmliftlem.g . . . . . . . . . . 11  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
64 cvmliftlem.p . . . . . . . . . . 11  |-  ( ph  ->  P  e.  B )
65 cvmliftlem.e . . . . . . . . . . 11  |-  ( ph  ->  ( F `  P
)  =  ( G `
 0 ) )
66 cvmliftlem.t . . . . . . . . . . 11  |-  ( ph  ->  T : ( 1 ... N ) --> U_ j  e.  J  ( { j }  X.  ( S `  j ) ) )
67 cvmliftlem.a . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  ( 1 ... N ) ( G " (
( ( k  - 
1 )  /  N
) [,] ( k  /  N ) ) )  C_  ( 1st `  ( T `  k
) ) )
68 cvmliftlem.l . . . . . . . . . . 11  |-  L  =  ( topGen `  ran  (,) )
69 cvmliftlem.q . . . . . . . . . . 11  |-  Q  =  seq 0 ( ( x  e.  _V ,  m  e.  NN  |->  ( z  e.  ( ( ( m  -  1 )  /  N ) [,] ( m  /  N
) )  |->  ( `' ( F  |`  ( iota_ b  e.  ( 2nd `  ( T `  m
) ) ( x `
 ( ( m  -  1 )  /  N ) )  e.  b ) ) `  ( G `  z ) ) ) ) ,  ( (  _I  |`  NN )  u.  { <. 0 ,  { <. 0 ,  P >. } >. } ) )
7059, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69cvmliftlem4 31270 . . . . . . . . . 10  |-  ( Q `
 0 )  =  { <. 0 ,  P >. }
7170a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( Q `  0
)  =  { <. 0 ,  P >. } )
722nnne0d 11065 . . . . . . . . . 10  |-  ( ph  ->  N  =/=  0 )
733, 72div0d 10800 . . . . . . . . 9  |-  ( ph  ->  ( 0  /  N
)  =  0 )
7471, 73fveq12d 6197 . . . . . . . 8  |-  ( ph  ->  ( ( Q ` 
0 ) `  (
0  /  N ) )  =  ( {
<. 0 ,  P >. } `  0 ) )
75 0nn0 11307 . . . . . . . . 9  |-  0  e.  NN0
76 fvsng 6447 . . . . . . . . 9  |-  ( ( 0  e.  NN0  /\  P  e.  B )  ->  ( { <. 0 ,  P >. } `  0
)  =  P )
7775, 64, 76sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( { <. 0 ,  P >. } `  0
)  =  P )
7874, 77eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( Q ` 
0 ) `  (
0  /  N ) )  =  P )
7973fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( G `  (
0  /  N ) )  =  ( G `
 0 ) )
8065, 79eqtr4d 2659 . . . . . . . 8  |-  ( ph  ->  ( F `  P
)  =  ( G `
 ( 0  /  N ) ) )
81 cvmcn 31244 . . . . . . . . . . 11  |-  ( F  e.  ( C CovMap  J
)  ->  F  e.  ( C  Cn  J
) )
8262, 81syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( C  Cn  J ) )
8360, 61cnf 21050 . . . . . . . . . 10  |-  ( F  e.  ( C  Cn  J )  ->  F : B --> X )
84 ffn 6045 . . . . . . . . . 10  |-  ( F : B --> X  ->  F  Fn  B )
8582, 83, 843syl 18 . . . . . . . . 9  |-  ( ph  ->  F  Fn  B )
86 fniniseg 6338 . . . . . . . . 9  |-  ( F  Fn  B  ->  ( P  e.  ( `' F " { ( G `
 ( 0  /  N ) ) } )  <->  ( P  e.  B  /\  ( F `
 P )  =  ( G `  (
0  /  N ) ) ) ) )
8785, 86syl 17 . . . . . . . 8  |-  ( ph  ->  ( P  e.  ( `' F " { ( G `  ( 0  /  N ) ) } )  <->  ( P  e.  B  /\  ( F `  P )  =  ( G `  ( 0  /  N
) ) ) ) )
8864, 80, 87mpbir2and 957 . . . . . . 7  |-  ( ph  ->  P  e.  ( `' F " { ( G `  ( 0  /  N ) ) } ) )
8978, 88eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( ( Q ` 
0 ) `  (
0  /  N ) )  e.  ( `' F " { ( G `  ( 0  /  N ) ) } ) )
9089a1d 25 . . . . 5  |-  ( ph  ->  ( 0  e.  ( 0 ... N )  ->  ( ( Q `
 0 ) `  ( 0  /  N
) )  e.  ( `' F " { ( G `  ( 0  /  N ) ) } ) ) )
91 id 22 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e. 
NN0 )
92 nn0uz 11722 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
9391, 92syl6eleq 2711 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ( ZZ>= `  0 )
)
9493adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN0 )  ->  n  e.  ( ZZ>= `  0 )
)
95 peano2fzr 12354 . . . . . . . . . . 11  |-  ( ( n  e.  ( ZZ>= ` 
0 )  /\  (
n  +  1 )  e.  ( 0 ... N ) )  ->  n  e.  ( 0 ... N ) )
9695ex 450 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  0
)  ->  ( (
n  +  1 )  e.  ( 0 ... N )  ->  n  e.  ( 0 ... N
) ) )
9794, 96syl 17 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
n  +  1 )  e.  ( 0 ... N )  ->  n  e.  ( 0 ... N
) ) )
9897imim1d 82 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
n  e.  ( 0 ... N )  -> 
( ( Q `  n ) `  (
n  /  N ) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) )  -> 
( ( n  + 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) ) )
99 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  + 
1 )  -  1 )  /  N ) [,] ( ( n  +  1 )  /  N ) )  =  ( ( ( ( n  +  1 )  -  1 )  /  N ) [,] (
( n  +  1 )  /  N ) )
100 simprlr 803 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  + 
1 )  e.  ( 0 ... N ) )
101 elfzle2 12345 . . . . . . . . . . . . . . . . 17  |-  ( ( n  +  1 )  e.  ( 0 ... N )  ->  (
n  +  1 )  <_  N )
102100, 101syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  + 
1 )  <_  N
)
103 simprll 802 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  n  e.  NN0 )
104 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
105103, 104syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  + 
1 )  e.  NN )
106 nnuz 11723 . . . . . . . . . . . . . . . . . 18  |-  NN  =  ( ZZ>= `  1 )
107105, 106syl6eleq 2711 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  + 
1 )  e.  (
ZZ>= `  1 ) )
10812adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  N  e.  ZZ )
109 elfz5 12334 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  +  1 )  e.  ( ZZ>= ` 
1 )  /\  N  e.  ZZ )  ->  (
( n  +  1 )  e.  ( 1 ... N )  <->  ( n  +  1 )  <_  N ) )
110107, 108, 109syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( n  +  1 )  e.  ( 1 ... N
)  <->  ( n  + 
1 )  <_  N
) )
111102, 110mpbird 247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  + 
1 )  e.  ( 1 ... N ) )
112 simprr 796 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) )
113103nn0cnd 11353 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  n  e.  CC )
114 pncan 10287 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
115113, 5, 114sylancl 694 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
116115fveq2d 6195 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( Q `  ( ( n  + 
1 )  -  1 ) )  =  ( Q `  n ) )
117115oveq1d 6665 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( ( n  +  1 )  -  1 )  /  N )  =  ( n  /  N ) )
118116, 117fveq12d 6197 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 ( ( n  +  1 )  - 
1 ) ) `  ( ( ( n  +  1 )  - 
1 )  /  N
) )  =  ( ( Q `  n
) `  ( n  /  N ) ) )
119117fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( G `  ( ( ( n  +  1 )  - 
1 )  /  N
) )  =  ( G `  ( n  /  N ) ) )
120119sneqd 4189 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  { ( G `
 ( ( ( n  +  1 )  -  1 )  /  N ) ) }  =  { ( G `
 ( n  /  N ) ) } )
121120imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( `' F " { ( G `  ( ( ( n  +  1 )  - 
1 )  /  N
) ) } )  =  ( `' F " { ( G `  ( n  /  N
) ) } ) )
122112, 118, 1213eltr4d 2716 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 ( ( n  +  1 )  - 
1 ) ) `  ( ( ( n  +  1 )  - 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( ( n  +  1 )  -  1 )  /  N ) ) } ) )
12359, 60, 61, 62, 63, 64, 65, 2, 66, 67, 68, 69, 99, 111, 122cvmliftlem6 31272 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 ( n  + 
1 ) ) : ( ( ( ( n  +  1 )  -  1 )  /  N ) [,] (
( n  +  1 )  /  N ) ) --> B  /\  ( F  o.  ( Q `  ( n  +  1 ) ) )  =  ( G  |`  (
( ( ( n  +  1 )  - 
1 )  /  N
) [,] ( ( n  +  1 )  /  N ) ) ) ) )
124123simpld 475 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( Q `  ( n  +  1
) ) : ( ( ( ( n  +  1 )  - 
1 )  /  N
) [,] ( ( n  +  1 )  /  N ) ) --> B )
125103nn0red 11352 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  n  e.  RR )
1262adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  N  e.  NN )
127125, 126nndivred 11069 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  /  N )  e.  RR )
128127rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  /  N )  e.  RR* )
129 peano2re 10209 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
130125, 129syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  + 
1 )  e.  RR )
131130, 126nndivred 11069 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( n  +  1 )  /  N )  e.  RR )
132131rexrd 10089 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( n  +  1 )  /  N )  e.  RR* )
133125ltp1d 10954 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  n  <  (
n  +  1 ) )
134126nnred 11035 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  N  e.  RR )
135126nngt0d 11064 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  0  <  N
)
136 ltdiv1 10887 . . . . . . . . . . . . . . . . . 18  |-  ( ( n  e.  RR  /\  ( n  +  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( n  <  ( n  +  1 )  <->  ( n  /  N )  <  (
( n  +  1 )  /  N ) ) )
137125, 130, 134, 135, 136syl112anc 1330 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  < 
( n  +  1 )  <->  ( n  /  N )  <  (
( n  +  1 )  /  N ) ) )
138133, 137mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  /  N )  <  (
( n  +  1 )  /  N ) )
139127, 131, 138ltled 10185 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( n  /  N )  <_  (
( n  +  1 )  /  N ) )
140 ubicc2 12289 . . . . . . . . . . . . . . 15  |-  ( ( ( n  /  N
)  e.  RR*  /\  (
( n  +  1 )  /  N )  e.  RR*  /\  (
n  /  N )  <_  ( ( n  +  1 )  /  N ) )  -> 
( ( n  + 
1 )  /  N
)  e.  ( ( n  /  N ) [,] ( ( n  +  1 )  /  N ) ) )
141128, 132, 139, 140syl3anc 1326 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( n  +  1 )  /  N )  e.  ( ( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) )
142117oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( ( ( n  +  1 )  -  1 )  /  N ) [,] ( ( n  + 
1 )  /  N
) )  =  ( ( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) )
143141, 142eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( n  +  1 )  /  N )  e.  ( ( ( ( n  +  1 )  - 
1 )  /  N
) [,] ( ( n  +  1 )  /  N ) ) )
144124, 143ffvelrnd 6360 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  B
)
145123simprd 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( F  o.  ( Q `  ( n  +  1 ) ) )  =  ( G  |`  ( ( ( ( n  +  1 )  -  1 )  /  N ) [,] (
( n  +  1 )  /  N ) ) ) )
146142reseq2d 5396 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( G  |`  ( ( ( ( n  +  1 )  -  1 )  /  N ) [,] (
( n  +  1 )  /  N ) ) )  =  ( G  |`  ( (
n  /  N ) [,] ( ( n  +  1 )  /  N ) ) ) )
147145, 146eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( F  o.  ( Q `  ( n  +  1 ) ) )  =  ( G  |`  ( ( n  /  N ) [,] (
( n  +  1 )  /  N ) ) ) )
148147fveq1d 6193 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( F  o.  ( Q `  ( n  +  1
) ) ) `  ( ( n  + 
1 )  /  N
) )  =  ( ( G  |`  (
( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) ) `  ( ( n  +  1 )  /  N ) ) )
149142feq2d 6031 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 ( n  + 
1 ) ) : ( ( ( ( n  +  1 )  -  1 )  /  N ) [,] (
( n  +  1 )  /  N ) ) --> B  <->  ( Q `  ( n  +  1 ) ) : ( ( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) --> B ) )
150124, 149mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( Q `  ( n  +  1
) ) : ( ( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) --> B )
151 fvco3 6275 . . . . . . . . . . . . . 14  |-  ( ( ( Q `  (
n  +  1 ) ) : ( ( n  /  N ) [,] ( ( n  +  1 )  /  N ) ) --> B  /\  ( ( n  +  1 )  /  N )  e.  ( ( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) )  ->  ( ( F  o.  ( Q `  ( n  +  1 ) ) ) `  ( ( n  + 
1 )  /  N
) )  =  ( F `  ( ( Q `  ( n  +  1 ) ) `
 ( ( n  +  1 )  /  N ) ) ) )
152150, 141, 151syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( F  o.  ( Q `  ( n  +  1
) ) ) `  ( ( n  + 
1 )  /  N
) )  =  ( F `  ( ( Q `  ( n  +  1 ) ) `
 ( ( n  +  1 )  /  N ) ) ) )
153 fvres 6207 . . . . . . . . . . . . . 14  |-  ( ( ( n  +  1 )  /  N )  e.  ( ( n  /  N ) [,] ( ( n  + 
1 )  /  N
) )  ->  (
( G  |`  (
( n  /  N
) [,] ( ( n  +  1 )  /  N ) ) ) `  ( ( n  +  1 )  /  N ) )  =  ( G `  ( ( n  + 
1 )  /  N
) ) )
154141, 153syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( G  |`  ( ( n  /  N ) [,] (
( n  +  1 )  /  N ) ) ) `  (
( n  +  1 )  /  N ) )  =  ( G `
 ( ( n  +  1 )  /  N ) ) )
155148, 152, 1543eqtr3d 2664 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( F `  ( ( Q `  ( n  +  1
) ) `  (
( n  +  1 )  /  N ) ) )  =  ( G `  ( ( n  +  1 )  /  N ) ) )
15685adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  F  Fn  B
)
157 fniniseg 6338 . . . . . . . . . . . . 13  |-  ( F  Fn  B  ->  (
( ( Q `  ( n  +  1
) ) `  (
( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } )  <->  ( (
( Q `  (
n  +  1 ) ) `  ( ( n  +  1 )  /  N ) )  e.  B  /\  ( F `  ( ( Q `  ( n  +  1 ) ) `
 ( ( n  +  1 )  /  N ) ) )  =  ( G `  ( ( n  + 
1 )  /  N
) ) ) ) )
158156, 157syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( ( Q `  ( n  +  1 ) ) `
 ( ( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  + 
1 )  /  N
) ) } )  <-> 
( ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  B  /\  ( F `  (
( Q `  (
n  +  1 ) ) `  ( ( n  +  1 )  /  N ) ) )  =  ( G `
 ( ( n  +  1 )  /  N ) ) ) ) )
159144, 155, 158mpbir2and 957 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
n  e.  NN0  /\  ( n  +  1
)  e.  ( 0 ... N ) )  /\  ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) )
160159expr 643 . . . . . . . . . 10  |-  ( (
ph  /\  ( n  e.  NN0  /\  ( n  +  1 )  e.  ( 0 ... N
) ) )  -> 
( ( ( Q `
 n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } )  ->  (
( Q `  (
n  +  1 ) ) `  ( ( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  + 
1 )  /  N
) ) } ) ) )
161160expr 643 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
n  +  1 )  e.  ( 0 ... N )  ->  (
( ( Q `  n ) `  (
n  /  N ) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } )  ->  (
( Q `  (
n  +  1 ) ) `  ( ( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  + 
1 )  /  N
) ) } ) ) ) )
162161a2d 29 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
( n  +  1 )  e.  ( 0 ... N )  -> 
( ( Q `  n ) `  (
n  /  N ) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) )  -> 
( ( n  + 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) ) ) )
16398, 162syld 47 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN0 )  ->  ( (
n  e.  ( 0 ... N )  -> 
( ( Q `  n ) `  (
n  /  N ) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) )  -> 
( ( n  + 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) ) ) )
164163expcom 451 . . . . . 6  |-  ( n  e.  NN0  ->  ( ph  ->  ( ( n  e.  ( 0 ... N
)  ->  ( ( Q `  n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) )  -> 
( ( n  + 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 ( n  + 
1 ) ) `  ( ( n  + 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) ) ) ) )
165164a2d 29 . . . . 5  |-  ( n  e.  NN0  ->  ( (
ph  ->  ( n  e.  ( 0 ... N
)  ->  ( ( Q `  n ) `  ( n  /  N
) )  e.  ( `' F " { ( G `  ( n  /  N ) ) } ) ) )  ->  ( ph  ->  ( ( n  +  1 )  e.  ( 0 ... N )  -> 
( ( Q `  ( n  +  1
) ) `  (
( n  +  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( n  +  1 )  /  N ) ) } ) ) ) ) )
16628, 38, 48, 58, 90, 165nn0ind 11472 . . . 4  |-  ( ( M  -  1 )  e.  NN0  ->  ( ph  ->  ( ( M  - 
1 )  e.  ( 0 ... N )  ->  ( ( Q `
 ( M  - 
1 ) ) `  ( ( M  - 
1 )  /  N
) )  e.  ( `' F " { ( G `  ( ( M  -  1 )  /  N ) ) } ) ) ) )
167166impd 447 . . 3  |-  ( ( M  -  1 )  e.  NN0  ->  ( (
ph  /\  ( M  -  1 )  e.  ( 0 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) ) )
16818, 167mpcom 38 . 2  |-  ( (
ph  /\  ( M  -  1 )  e.  ( 0 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) )
16916, 168syldan 487 1  |-  ( (
ph  /\  M  e.  ( 1 ... N
) )  ->  (
( Q `  ( M  -  1 ) ) `  ( ( M  -  1 )  /  N ) )  e.  ( `' F " { ( G `  ( ( M  - 
1 )  /  N
) ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   (,)cioo 12175   [,]cicc 12178   ...cfz 12326    seqcseq 12801   ↾t crest 16081   topGenctg 16098    Cn ccn 21028   Homeochmeo 21556   IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-hmeo 21558  df-ii 22680  df-cvm 31238
This theorem is referenced by:  cvmliftlem8  31274  cvmliftlem9  31275  cvmliftlem10  31276  cvmliftlem13  31278
  Copyright terms: Public domain W3C validator