MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cygznlem1 Structured version   Visualization version   Unicode version

Theorem cygznlem1 19915
Description: Lemma for cygzn 19919. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
cygzn.b  |-  B  =  ( Base `  G
)
cygzn.n  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
cygzn.y  |-  Y  =  (ℤ/n `  N )
cygzn.m  |-  .x.  =  (.g
`  G )
cygzn.l  |-  L  =  ( ZRHom `  Y
)
cygzn.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
cygzn.g  |-  ( ph  ->  G  e. CycGrp )
cygzn.x  |-  ( ph  ->  X  e.  E )
Assertion
Ref Expression
cygznlem1  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( L `  K )  =  ( L `  M )  <-> 
( K  .x.  X
)  =  ( M 
.x.  X ) ) )
Distinct variable groups:    x, n, B    n, G, x    .x. , n, x    n, Y, x    n, L, x    x, N    n, X, x
Allowed substitution hints:    ph( x, n)    E( x, n)    K( x, n)    M( x, n)    N( n)

Proof of Theorem cygznlem1
StepHypRef Expression
1 cygzn.n . . . . 5  |-  N  =  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )
2 hashcl 13147 . . . . . . 7  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
32adantl 482 . . . . . 6  |-  ( (
ph  /\  B  e.  Fin )  ->  ( # `  B )  e.  NN0 )
4 0nn0 11307 . . . . . . 7  |-  0  e.  NN0
54a1i 11 . . . . . 6  |-  ( (
ph  /\  -.  B  e.  Fin )  ->  0  e.  NN0 )
63, 5ifclda 4120 . . . . 5  |-  ( ph  ->  if ( B  e. 
Fin ,  ( # `  B
) ,  0 )  e.  NN0 )
71, 6syl5eqel 2705 . . . 4  |-  ( ph  ->  N  e.  NN0 )
87adantr 481 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  N  e.  NN0 )
9 simprl 794 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  K  e.  ZZ )
10 simprr 796 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  M  e.  ZZ )
11 cygzn.y . . . 4  |-  Y  =  (ℤ/n `  N )
12 cygzn.l . . . 4  |-  L  =  ( ZRHom `  Y
)
1311, 12zndvds 19898 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  M  e.  ZZ )  ->  (
( L `  K
)  =  ( L `
 M )  <->  N  ||  ( K  -  M )
) )
148, 9, 10, 13syl3anc 1326 . 2  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( L `  K )  =  ( L `  M )  <-> 
N  ||  ( K  -  M ) ) )
15 cygzn.g . . . . . . 7  |-  ( ph  ->  G  e. CycGrp )
16 cyggrp 18291 . . . . . . 7  |-  ( G  e. CycGrp  ->  G  e.  Grp )
1715, 16syl 17 . . . . . 6  |-  ( ph  ->  G  e.  Grp )
18 cygzn.x . . . . . 6  |-  ( ph  ->  X  e.  E )
19 cygzn.b . . . . . . 7  |-  B  =  ( Base `  G
)
20 cygzn.m . . . . . . 7  |-  .x.  =  (.g
`  G )
21 cygzn.e . . . . . . 7  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
22 eqid 2622 . . . . . . 7  |-  ( od
`  G )  =  ( od `  G
)
2319, 20, 21, 22cyggenod2 18287 . . . . . 6  |-  ( ( G  e.  Grp  /\  X  e.  E )  ->  ( ( od `  G ) `  X
)  =  if ( B  e.  Fin , 
( # `  B ) ,  0 ) )
2417, 18, 23syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( od `  G ) `  X
)  =  if ( B  e.  Fin , 
( # `  B ) ,  0 ) )
2524, 1syl6eqr 2674 . . . 4  |-  ( ph  ->  ( ( od `  G ) `  X
)  =  N )
2625adantr 481 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( od `  G ) `  X
)  =  N )
2726breq1d 4663 . 2  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( ( od
`  G ) `  X )  ||  ( K  -  M )  <->  N 
||  ( K  -  M ) ) )
2817adantr 481 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  G  e.  Grp )
2919, 20, 21iscyggen 18282 . . . . . 6  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
3029simplbi 476 . . . . 5  |-  ( X  e.  E  ->  X  e.  B )
3118, 30syl 17 . . . 4  |-  ( ph  ->  X  e.  B )
3231adantr 481 . . 3  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  X  e.  B )
33 eqid 2622 . . . 4  |-  ( 0g
`  G )  =  ( 0g `  G
)
3419, 22, 20, 33odcong 17968 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  ->  ( (
( od `  G
) `  X )  ||  ( K  -  M
)  <->  ( K  .x.  X )  =  ( M  .x.  X ) ) )
3528, 32, 9, 10, 34syl112anc 1330 . 2  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( ( od
`  G ) `  X )  ||  ( K  -  M )  <->  ( K  .x.  X )  =  ( M  .x.  X ) ) )
3614, 27, 353bitr2d 296 1  |-  ( (
ph  /\  ( K  e.  ZZ  /\  M  e.  ZZ ) )  -> 
( ( L `  K )  =  ( L `  M )  <-> 
( K  .x.  X
)  =  ( M 
.x.  X ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936    - cmin 10266   NN0cn0 11292   ZZcz 11377   #chash 13117    || cdvds 14983   Basecbs 15857   0gc0g 16100   Grpcgrp 17422  .gcmg 17540   odcod 17944  CycGrpccyg 18279   ZRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-od 17948  df-cmn 18195  df-abl 18196  df-cyg 18280  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-rnghom 18715  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by:  cygznlem2a  19916  cygznlem3  19918
  Copyright terms: Public domain W3C validator