![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1tm | Structured version Visualization version GIF version |
Description: Exact degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015.) |
Ref | Expression |
---|---|
deg1tm.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1tm.k | ⊢ 𝐾 = (Base‘𝑅) |
deg1tm.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1tm.x | ⊢ 𝑋 = (var1‘𝑅) |
deg1tm.m | ⊢ · = ( ·𝑠 ‘𝑃) |
deg1tm.n | ⊢ 𝑁 = (mulGrp‘𝑃) |
deg1tm.e | ⊢ ↑ = (.g‘𝑁) |
deg1tm.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
deg1tm | ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1tm.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | deg1tm.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
3 | deg1tm.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | deg1tm.x | . . . 4 ⊢ 𝑋 = (var1‘𝑅) | |
5 | deg1tm.m | . . . 4 ⊢ · = ( ·𝑠 ‘𝑃) | |
6 | deg1tm.n | . . . 4 ⊢ 𝑁 = (mulGrp‘𝑃) | |
7 | deg1tm.e | . . . 4 ⊢ ↑ = (.g‘𝑁) | |
8 | 1, 2, 3, 4, 5, 6, 7 | deg1tmle 23877 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) |
9 | 8 | 3adant2r 1321 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹) |
10 | eqid 2622 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
11 | 2, 3, 4, 5, 6, 7, 10 | ply1tmcl 19642 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → (𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃)) |
12 | 11 | 3adant2r 1321 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃)) |
13 | simp3 1063 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℕ0) | |
14 | deg1tm.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
15 | 14, 2, 3, 4, 5, 6, 7 | coe1tmfv1 19644 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐾 ∧ 𝐹 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝐹) = 𝐶) |
16 | 15 | 3adant2r 1321 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝐹) = 𝐶) |
17 | simp2r 1088 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → 𝐶 ≠ 0 ) | |
18 | 16, 17 | eqnetrd 2861 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝐹) ≠ 0 ) |
19 | eqid 2622 | . . . 4 ⊢ (coe1‘(𝐶 · (𝐹 ↑ 𝑋))) = (coe1‘(𝐶 · (𝐹 ↑ 𝑋))) | |
20 | 1, 3, 10, 14, 19 | deg1ge 23858 | . . 3 ⊢ (((𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃) ∧ 𝐹 ∈ ℕ0 ∧ ((coe1‘(𝐶 · (𝐹 ↑ 𝑋)))‘𝐹) ≠ 0 ) → 𝐹 ≤ (𝐷‘(𝐶 · (𝐹 ↑ 𝑋)))) |
21 | 12, 13, 18, 20 | syl3anc 1326 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → 𝐹 ≤ (𝐷‘(𝐶 · (𝐹 ↑ 𝑋)))) |
22 | 1, 3, 10 | deg1xrcl 23842 | . . . 4 ⊢ ((𝐶 · (𝐹 ↑ 𝑋)) ∈ (Base‘𝑃) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ∈ ℝ*) |
23 | 12, 22 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ∈ ℝ*) |
24 | 13 | nn0red 11352 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℝ) |
25 | 24 | rexrd 10089 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → 𝐹 ∈ ℝ*) |
26 | xrletri3 11985 | . . 3 ⊢ (((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ∈ ℝ* ∧ 𝐹 ∈ ℝ*) → ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹 ↔ ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹 ∧ 𝐹 ≤ (𝐷‘(𝐶 · (𝐹 ↑ 𝑋)))))) | |
27 | 23, 25, 26 | syl2anc 693 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹 ↔ ((𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) ≤ 𝐹 ∧ 𝐹 ≤ (𝐷‘(𝐶 · (𝐹 ↑ 𝑋)))))) |
28 | 9, 21, 27 | mpbir2and 957 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐾 ∧ 𝐶 ≠ 0 ) ∧ 𝐹 ∈ ℕ0) → (𝐷‘(𝐶 · (𝐹 ↑ 𝑋))) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℝ*cxr 10073 ≤ cle 10075 ℕ0cn0 11292 Basecbs 15857 ·𝑠 cvsca 15945 0gc0g 16100 .gcmg 17540 mulGrpcmgp 18489 Ringcrg 18547 var1cv1 19546 Poly1cpl1 19547 coe1cco1 19548 deg1 cdg1 23814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-sup 8348 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-starv 15956 df-sca 15957 df-vsca 15958 df-tset 15960 df-ple 15961 df-ds 15964 df-unif 15965 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-sbg 17427 df-mulg 17541 df-subg 17591 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-subrg 18778 df-lmod 18865 df-lss 18933 df-psr 19356 df-mvr 19357 df-mpl 19358 df-opsr 19360 df-psr1 19550 df-vr1 19551 df-ply1 19552 df-coe1 19553 df-cnfld 19747 df-mdeg 23815 df-deg1 23816 |
This theorem is referenced by: deg1pw 23880 fta1blem 23928 |
Copyright terms: Public domain | W3C validator |