| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 11723 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 11408 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 3 | | stoweidlem7.7 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 4 | | stoweidlem7.2 |
. . . . . . 7
⊢ 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖)) |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐺 = (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖))) |
| 6 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → (𝐵↑𝑖) = (𝐵↑𝑘)) |
| 7 | 6 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → (𝐵↑𝑖) = (𝐵↑𝑘)) |
| 8 | | nnnn0 11299 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 9 | 8 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
| 10 | | stoweidlem7.5 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℝ+) |
| 11 | 10 | rpcnd 11874 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐵 ∈ ℂ) |
| 13 | 12, 9 | expcld 13008 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐵↑𝑘) ∈ ℂ) |
| 14 | 5, 7, 9, 13 | fvmptd 6288 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐺‘𝑘) = (𝐵↑𝑘)) |
| 15 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℝ) |
| 16 | 15 | renegcld 10457 |
. . . . . . . . 9
⊢ (𝜑 → -1 ∈
ℝ) |
| 17 | | 0red 10041 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈
ℝ) |
| 18 | 10 | rpred 11872 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 19 | | neg1lt0 11127 |
. . . . . . . . . 10
⊢ -1 <
0 |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → -1 <
0) |
| 21 | 10 | rpgt0d 11875 |
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝐵) |
| 22 | 16, 17, 18, 20, 21 | lttrd 10198 |
. . . . . . . 8
⊢ (𝜑 → -1 < 𝐵) |
| 23 | | stoweidlem7.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 < 1) |
| 24 | 18, 15 | absltd 14168 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝐵) < 1 ↔ (-1 < 𝐵 ∧ 𝐵 < 1))) |
| 25 | 22, 23, 24 | mpbir2and 957 |
. . . . . . 7
⊢ (𝜑 → (abs‘𝐵) < 1) |
| 26 | 11, 25 | expcnv 14596 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ (𝐵↑𝑖)) ⇝ 0) |
| 27 | 4, 26 | syl5eqbr 4688 |
. . . . 5
⊢ (𝜑 → 𝐺 ⇝ 0) |
| 28 | 1, 2, 3, 14, 27 | climi 14241 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) |
| 29 | | r19.26 3064 |
. . . . . . . . . . . . . 14
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸) ↔ (∀𝑘 ∈ (ℤ≥‘𝑛)(𝐵↑𝑘) ∈ ℂ ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐵↑𝑘) − 0)) < 𝐸)) |
| 30 | 29 | simprbi 480 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘((𝐵↑𝑘) − 0)) < 𝐸) |
| 31 | 30 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → ∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐵↑𝑘) − 0)) < 𝐸) |
| 32 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑖 → (𝐵↑𝑘) = (𝐵↑𝑖)) |
| 33 | 32 | oveq1d 6665 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑖 → ((𝐵↑𝑘) − 0) = ((𝐵↑𝑖) − 0)) |
| 34 | 33 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (abs‘((𝐵↑𝑘) − 0)) = (abs‘((𝐵↑𝑖) − 0))) |
| 35 | 34 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → ((abs‘((𝐵↑𝑘) − 0)) < 𝐸 ↔ (abs‘((𝐵↑𝑖) − 0)) < 𝐸)) |
| 36 | 35 | rspccva 3308 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘((𝐵↑𝑘) − 0)) < 𝐸 ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐵↑𝑖) − 0)) < 𝐸) |
| 37 | 31, 36 | sylancom 701 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (abs‘((𝐵↑𝑖) − 0)) < 𝐸) |
| 38 | | simplll 798 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝜑) |
| 39 | 38, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝐵 ∈
ℝ+) |
| 40 | 39 | rpred 11872 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝐵 ∈ ℝ) |
| 41 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ) |
| 42 | | nnnn0 11299 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝑛 ∈ ℕ0) |
| 44 | | eluznn0 11757 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑖 ∈
(ℤ≥‘𝑛)) → 𝑖 ∈ ℕ0) |
| 45 | 43, 44 | sylancom 701 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝑖 ∈ ℕ0) |
| 46 | 40, 45 | reexpcld 13025 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (𝐵↑𝑖) ∈ ℝ) |
| 47 | | rpre 11839 |
. . . . . . . . . . . . 13
⊢ (𝐸 ∈ ℝ+
→ 𝐸 ∈
ℝ) |
| 48 | 38, 3, 47 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝐸 ∈ ℝ) |
| 49 | | recn 10026 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵↑𝑖) ∈ ℝ → (𝐵↑𝑖) ∈ ℂ) |
| 50 | 49 | subid1d 10381 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐵↑𝑖) ∈ ℝ → ((𝐵↑𝑖) − 0) = (𝐵↑𝑖)) |
| 51 | 50 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐵↑𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((𝐵↑𝑖) − 0) = (𝐵↑𝑖)) |
| 52 | 51 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝐵↑𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → (abs‘((𝐵↑𝑖) − 0)) = (abs‘(𝐵↑𝑖))) |
| 53 | 52 | breq1d 4663 |
. . . . . . . . . . . . 13
⊢ (((𝐵↑𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵↑𝑖) − 0)) < 𝐸 ↔ (abs‘(𝐵↑𝑖)) < 𝐸)) |
| 54 | | abslt 14054 |
. . . . . . . . . . . . 13
⊢ (((𝐵↑𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘(𝐵↑𝑖)) < 𝐸 ↔ (-𝐸 < (𝐵↑𝑖) ∧ (𝐵↑𝑖) < 𝐸))) |
| 55 | 53, 54 | bitrd 268 |
. . . . . . . . . . . 12
⊢ (((𝐵↑𝑖) ∈ ℝ ∧ 𝐸 ∈ ℝ) → ((abs‘((𝐵↑𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵↑𝑖) ∧ (𝐵↑𝑖) < 𝐸))) |
| 56 | 46, 48, 55 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → ((abs‘((𝐵↑𝑖) − 0)) < 𝐸 ↔ (-𝐸 < (𝐵↑𝑖) ∧ (𝐵↑𝑖) < 𝐸))) |
| 57 | 37, 56 | mpbid 222 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (-𝐸 < (𝐵↑𝑖) ∧ (𝐵↑𝑖) < 𝐸)) |
| 58 | 57 | simprd 479 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (𝐵↑𝑖) < 𝐸) |
| 59 | | eluznn 11758 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘𝑛)) → 𝑖 ∈ ℕ) |
| 60 | 41, 59 | sylancom 701 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → 𝑖 ∈ ℕ) |
| 61 | 18 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝐵 ∈ ℝ) |
| 62 | | nnnn0 11299 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ ℕ → 𝑖 ∈
ℕ0) |
| 63 | 62 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ0) |
| 64 | 61, 63 | reexpcld 13025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐵↑𝑖) ∈ ℝ) |
| 65 | 3 | rpred 11872 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 66 | 65 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝐸 ∈ ℝ) |
| 67 | | 1red 10055 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 1 ∈
ℝ) |
| 68 | 64, 66, 67 | ltsub2d 10637 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐵↑𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵↑𝑖)))) |
| 69 | 38, 60, 68 | syl2anc 693 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → ((𝐵↑𝑖) < 𝐸 ↔ (1 − 𝐸) < (1 − (𝐵↑𝑖)))) |
| 70 | 58, 69 | mpbid 222 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) ∧ 𝑖 ∈ (ℤ≥‘𝑛)) → (1 − 𝐸) < (1 − (𝐵↑𝑖))) |
| 71 | 70 | ralrimiva 2966 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) → ∀𝑖 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑖))) |
| 72 | 32 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑘 = 𝑖 → (1 − (𝐵↑𝑘)) = (1 − (𝐵↑𝑖))) |
| 73 | 72 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑘 = 𝑖 → ((1 − 𝐸) < (1 − (𝐵↑𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵↑𝑖)))) |
| 74 | 73 | cbvralv 3171 |
. . . . . . 7
⊢
(∀𝑘 ∈
(ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑘)) ↔ ∀𝑖 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑖))) |
| 75 | 71, 74 | sylibr 224 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸)) → ∀𝑘 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑘))) |
| 76 | 75 | ex 450 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸) → ∀𝑘 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑘)))) |
| 77 | 76 | reximdva 3017 |
. . . 4
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐵↑𝑘) ∈ ℂ ∧ (abs‘((𝐵↑𝑘) − 0)) < 𝐸) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑘)))) |
| 78 | 28, 77 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑘))) |
| 79 | | stoweidlem7.1 |
. . . . . . 7
⊢ 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 /
𝐴)↑𝑖)) |
| 80 | 79 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹 = (𝑖 ∈ ℕ0 ↦ ((1 /
𝐴)↑𝑖))) |
| 81 | | oveq2 6658 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘)) |
| 82 | 81 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑖 = 𝑘) → ((1 / 𝐴)↑𝑖) = ((1 / 𝐴)↑𝑘)) |
| 83 | | stoweidlem7.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 84 | 83 | recnd 10068 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 85 | | 0lt1 10550 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
| 86 | 85 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < 1) |
| 87 | | stoweidlem7.4 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 < 𝐴) |
| 88 | 17, 15, 83, 86, 87 | lttrd 10198 |
. . . . . . . . . 10
⊢ (𝜑 → 0 < 𝐴) |
| 89 | 88 | gt0ne0d 10592 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≠ 0) |
| 90 | 84, 89 | reccld 10794 |
. . . . . . . 8
⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| 91 | 90 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝐴) ∈
ℂ) |
| 92 | 91, 9 | expcld 13008 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℂ) |
| 93 | 80, 82, 9, 92 | fvmptd 6288 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| 94 | 83, 89 | rereccld 10852 |
. . . . . . . . 9
⊢ (𝜑 → (1 / 𝐴) ∈ ℝ) |
| 95 | 83, 88 | recgt0d 10958 |
. . . . . . . . 9
⊢ (𝜑 → 0 < (1 / 𝐴)) |
| 96 | 16, 17, 94, 20, 95 | lttrd 10198 |
. . . . . . . 8
⊢ (𝜑 → -1 < (1 / 𝐴)) |
| 97 | | ltdiv23 10914 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ (𝐴
∈ ℝ ∧ 0 < 𝐴) ∧ (1 ∈ ℝ ∧ 0 < 1))
→ ((1 / 𝐴) < 1
↔ (1 / 1) < 𝐴)) |
| 98 | 15, 83, 88, 15, 86, 97 | syl122anc 1335 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 / 𝐴) < 1 ↔ (1 / 1) < 𝐴)) |
| 99 | | 1cnd 10056 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
| 100 | 99 | div1d 10793 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / 1) =
1) |
| 101 | 100 | breq1d 4663 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 / 1) < 𝐴 ↔ 1 < 𝐴)) |
| 102 | 98, 101 | bitrd 268 |
. . . . . . . . 9
⊢ (𝜑 → ((1 / 𝐴) < 1 ↔ 1 < 𝐴)) |
| 103 | 87, 102 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → (1 / 𝐴) < 1) |
| 104 | 94, 15 | absltd 14168 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘(1 / 𝐴)) < 1 ↔ (-1 < (1 /
𝐴) ∧ (1 / 𝐴) < 1))) |
| 105 | 96, 103, 104 | mpbir2and 957 |
. . . . . . 7
⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
| 106 | 90, 105 | expcnv 14596 |
. . . . . 6
⊢ (𝜑 → (𝑖 ∈ ℕ0 ↦ ((1 /
𝐴)↑𝑖)) ⇝ 0) |
| 107 | 79, 106 | syl5eqbr 4688 |
. . . . 5
⊢ (𝜑 → 𝐹 ⇝ 0) |
| 108 | 1, 2, 3, 93, 107 | climi2 14242 |
. . . 4
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸) |
| 109 | | simpll 790 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝜑) |
| 110 | | uznnssnn 11735 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(ℤ≥‘𝑛) ⊆ ℕ) |
| 111 | 110 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) →
(ℤ≥‘𝑛) ⊆ ℕ) |
| 112 | | simpr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ (ℤ≥‘𝑛)) |
| 113 | 111, 112 | sseldd 3604 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → 𝑘 ∈ ℕ) |
| 114 | 92 | subid1d 10381 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 / 𝐴)↑𝑘) − 0) = ((1 / 𝐴)↑𝑘)) |
| 115 | 114 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(((1 /
𝐴)↑𝑘) − 0)) = (abs‘((1 / 𝐴)↑𝑘))) |
| 116 | 94 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝐴) ∈
ℝ) |
| 117 | 116, 9 | reexpcld 13025 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / 𝐴)↑𝑘) ∈ ℝ) |
| 118 | 17, 94, 95 | ltled 10185 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ≤ (1 / 𝐴)) |
| 119 | 118 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝐴)) |
| 120 | 116, 9, 119 | expge0d 13026 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 𝐴)↑𝑘)) |
| 121 | 117, 120 | absidd 14161 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((1 /
𝐴)↑𝑘)) = ((1 / 𝐴)↑𝑘)) |
| 122 | 115, 121 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(((1 /
𝐴)↑𝑘) − 0)) = ((1 / 𝐴)↑𝑘)) |
| 123 | 122 | breq1d 4663 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘(((1 /
𝐴)↑𝑘) − 0)) < 𝐸 ↔ ((1 / 𝐴)↑𝑘) < 𝐸)) |
| 124 | 123 | biimpd 219 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘(((1 /
𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸)) |
| 125 | 109, 113,
124 | syl2anc 693 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑛)) → ((abs‘(((1 /
𝐴)↑𝑘) − 0)) < 𝐸 → ((1 / 𝐴)↑𝑘) < 𝐸)) |
| 126 | 125 | ralimdva 2962 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∀𝑘 ∈ (ℤ≥‘𝑛)((1 / 𝐴)↑𝑘) < 𝐸)) |
| 127 | 126 | reximdva 3017 |
. . . 4
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(abs‘(((1 / 𝐴)↑𝑘) − 0)) < 𝐸 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((1 / 𝐴)↑𝑘) < 𝐸)) |
| 128 | 108, 127 | mpd 15 |
. . 3
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((1 / 𝐴)↑𝑘) < 𝐸) |
| 129 | 1 | rexanuz2 14089 |
. . 3
⊢
(∃𝑛 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)(1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((1 / 𝐴)↑𝑘) < 𝐸)) |
| 130 | 78, 128, 129 | sylanbrc 698 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) |
| 131 | | simpr 477 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ∀𝑘 ∈ (ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) |
| 132 | | nnz 11399 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 133 | | uzid 11702 |
. . . . . . . 8
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
| 134 | 132, 133 | syl 17 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘𝑛)) |
| 135 | 134 | ad2antlr 763 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → 𝑛 ∈ (ℤ≥‘𝑛)) |
| 136 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (𝐵↑𝑘) = (𝐵↑𝑛)) |
| 137 | 136 | oveq2d 6666 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (1 − (𝐵↑𝑘)) = (1 − (𝐵↑𝑛))) |
| 138 | 137 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((1 − 𝐸) < (1 − (𝐵↑𝑘)) ↔ (1 − 𝐸) < (1 − (𝐵↑𝑛)))) |
| 139 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → ((1 / 𝐴)↑𝑘) = ((1 / 𝐴)↑𝑛)) |
| 140 | 139 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (((1 / 𝐴)↑𝑘) < 𝐸 ↔ ((1 / 𝐴)↑𝑛) < 𝐸)) |
| 141 | 138, 140 | anbi12d 747 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸))) |
| 142 | 141 | rspccva 3308 |
. . . . . 6
⊢
((∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) ∧ 𝑛 ∈ (ℤ≥‘𝑛)) → ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)) |
| 143 | 131, 135,
142 | syl2anc 693 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸)) |
| 144 | | 1cnd 10056 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 1 ∈
ℂ) |
| 145 | 84, 89 | jca 554 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| 146 | 145 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) |
| 147 | 42 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 148 | | expdiv 12911 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ (𝐴
∈ ℂ ∧ 𝐴 ≠
0) ∧ 𝑛 ∈
ℕ0) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴↑𝑛))) |
| 149 | 144, 146,
147, 148 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = ((1↑𝑛) / (𝐴↑𝑛))) |
| 150 | 132 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 151 | | 1exp 12889 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
| 152 | 150, 151 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (1↑𝑛) = 1) |
| 153 | 152 | oveq1d 6665 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1↑𝑛) / (𝐴↑𝑛)) = (1 / (𝐴↑𝑛))) |
| 154 | 149, 153 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((1 / 𝐴)↑𝑛) = (1 / (𝐴↑𝑛))) |
| 155 | 154 | breq1d 4663 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴↑𝑛)) < 𝐸)) |
| 156 | 155 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 / 𝐴)↑𝑛) < 𝐸 ↔ (1 / (𝐴↑𝑛)) < 𝐸)) |
| 157 | 156 | anbi2d 740 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → (((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ ((1 / 𝐴)↑𝑛) < 𝐸) ↔ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸))) |
| 158 | 143, 157 | mpbid 222 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸)) → ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸)) |
| 159 | 158 | ex 450 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸))) |
| 160 | 159 | reximdva 3017 |
. 2
⊢ (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((1 − 𝐸) < (1 − (𝐵↑𝑘)) ∧ ((1 / 𝐴)↑𝑘) < 𝐸) → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸))) |
| 161 | 130, 160 | mpd 15 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ((1 − 𝐸) < (1 − (𝐵↑𝑛)) ∧ (1 / (𝐴↑𝑛)) < 𝐸)) |