| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expcnv | Structured version Visualization version Unicode version | ||
| Description: A sequence of powers of a
complex number |
| Ref | Expression |
|---|---|
| expcnv.1 |
|
| expcnv.2 |
|
| Ref | Expression |
|---|---|
| expcnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz 11723 |
. . 3
| |
| 2 | 1zzd 11408 |
. . 3
| |
| 3 | nn0ex 11298 |
. . . . 5
| |
| 4 | 3 | mptex 6486 |
. . . 4
|
| 5 | 4 | a1i 11 |
. . 3
|
| 6 | 0cnd 10033 |
. . 3
| |
| 7 | nnnn0 11299 |
. . . . . 6
| |
| 8 | oveq2 6658 |
. . . . . . 7
| |
| 9 | eqid 2622 |
. . . . . . 7
| |
| 10 | ovex 6678 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | fvmpt 6282 |
. . . . . 6
|
| 12 | 7, 11 | syl 17 |
. . . . 5
|
| 13 | simpr 477 |
. . . . . 6
| |
| 14 | 13 | oveq1d 6665 |
. . . . 5
|
| 15 | 12, 14 | sylan9eqr 2678 |
. . . 4
|
| 16 | 0exp 12895 |
. . . . 5
| |
| 17 | 16 | adantl 482 |
. . . 4
|
| 18 | 15, 17 | eqtrd 2656 |
. . 3
|
| 19 | 1, 2, 5, 6, 18 | climconst 14274 |
. 2
|
| 20 | 1zzd 11408 |
. . . 4
| |
| 21 | expcnv.2 |
. . . . . . . . . 10
| |
| 22 | 21 | adantr 481 |
. . . . . . . . 9
|
| 23 | expcnv.1 |
. . . . . . . . . . 11
| |
| 24 | absrpcl 14028 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | sylan 488 |
. . . . . . . . . 10
|
| 26 | 25 | reclt1d 11885 |
. . . . . . . . 9
|
| 27 | 22, 26 | mpbid 222 |
. . . . . . . 8
|
| 28 | 1re 10039 |
. . . . . . . . 9
| |
| 29 | 25 | rpreccld 11882 |
. . . . . . . . . 10
|
| 30 | 29 | rpred 11872 |
. . . . . . . . 9
|
| 31 | difrp 11868 |
. . . . . . . . 9
| |
| 32 | 28, 30, 31 | sylancr 695 |
. . . . . . . 8
|
| 33 | 27, 32 | mpbid 222 |
. . . . . . 7
|
| 34 | 33 | rpreccld 11882 |
. . . . . 6
|
| 35 | 34 | rpcnd 11874 |
. . . . 5
|
| 36 | divcnv 14585 |
. . . . 5
| |
| 37 | 35, 36 | syl 17 |
. . . 4
|
| 38 | nnex 11026 |
. . . . . 6
| |
| 39 | 38 | mptex 6486 |
. . . . 5
|
| 40 | 39 | a1i 11 |
. . . 4
|
| 41 | oveq2 6658 |
. . . . . . 7
| |
| 42 | eqid 2622 |
. . . . . . 7
| |
| 43 | ovex 6678 |
. . . . . . 7
| |
| 44 | 41, 42, 43 | fvmpt 6282 |
. . . . . 6
|
| 45 | 44 | adantl 482 |
. . . . 5
|
| 46 | 34 | rpred 11872 |
. . . . . 6
|
| 47 | nndivre 11056 |
. . . . . 6
| |
| 48 | 46, 47 | sylan 488 |
. . . . 5
|
| 49 | 45, 48 | eqeltrd 2701 |
. . . 4
|
| 50 | oveq2 6658 |
. . . . . . . 8
| |
| 51 | eqid 2622 |
. . . . . . . 8
| |
| 52 | ovex 6678 |
. . . . . . . 8
| |
| 53 | 50, 51, 52 | fvmpt 6282 |
. . . . . . 7
|
| 54 | 53 | adantl 482 |
. . . . . 6
|
| 55 | nnz 11399 |
. . . . . . 7
| |
| 56 | rpexpcl 12879 |
. . . . . . 7
| |
| 57 | 25, 55, 56 | syl2an 494 |
. . . . . 6
|
| 58 | 54, 57 | eqeltrd 2701 |
. . . . 5
|
| 59 | 58 | rpred 11872 |
. . . 4
|
| 60 | nnrp 11842 |
. . . . . . . 8
| |
| 61 | rpmulcl 11855 |
. . . . . . . 8
| |
| 62 | 33, 60, 61 | syl2an 494 |
. . . . . . 7
|
| 63 | 62 | rpred 11872 |
. . . . . . . . 9
|
| 64 | peano2re 10209 |
. . . . . . . . . 10
| |
| 65 | 63, 64 | syl 17 |
. . . . . . . . 9
|
| 66 | rpexpcl 12879 |
. . . . . . . . . . 11
| |
| 67 | 29, 55, 66 | syl2an 494 |
. . . . . . . . . 10
|
| 68 | 67 | rpred 11872 |
. . . . . . . . 9
|
| 69 | 63 | lep1d 10955 |
. . . . . . . . 9
|
| 70 | 30 | adantr 481 |
. . . . . . . . . 10
|
| 71 | 7 | adantl 482 |
. . . . . . . . . 10
|
| 72 | 29 | rpge0d 11876 |
. . . . . . . . . . 11
|
| 73 | 72 | adantr 481 |
. . . . . . . . . 10
|
| 74 | bernneq2 12991 |
. . . . . . . . . 10
| |
| 75 | 70, 71, 73, 74 | syl3anc 1326 |
. . . . . . . . 9
|
| 76 | 63, 65, 68, 69, 75 | letrd 10194 |
. . . . . . . 8
|
| 77 | 25 | rpcnne0d 11881 |
. . . . . . . . 9
|
| 78 | exprec 12901 |
. . . . . . . . . 10
| |
| 79 | 78 | 3expa 1265 |
. . . . . . . . 9
|
| 80 | 77, 55, 79 | syl2an 494 |
. . . . . . . 8
|
| 81 | 76, 80 | breqtrd 4679 |
. . . . . . 7
|
| 82 | 62, 57, 81 | lerec2d 11893 |
. . . . . 6
|
| 83 | 33 | rpcnne0d 11881 |
. . . . . . 7
|
| 84 | nncn 11028 |
. . . . . . . 8
| |
| 85 | nnne0 11053 |
. . . . . . . 8
| |
| 86 | 84, 85 | jca 554 |
. . . . . . 7
|
| 87 | recdiv2 10738 |
. . . . . . 7
| |
| 88 | 83, 86, 87 | syl2an 494 |
. . . . . 6
|
| 89 | 82, 88 | breqtrrd 4681 |
. . . . 5
|
| 90 | 89, 54, 45 | 3brtr4d 4685 |
. . . 4
|
| 91 | 58 | rpge0d 11876 |
. . . 4
|
| 92 | 1, 20, 37, 40, 49, 59, 90, 91 | climsqz2 14372 |
. . 3
|
| 93 | 1zzd 11408 |
. . . . 5
| |
| 94 | 4 | a1i 11 |
. . . . 5
|
| 95 | 39 | a1i 11 |
. . . . 5
|
| 96 | 7 | adantl 482 |
. . . . . . 7
|
| 97 | 96, 11 | syl 17 |
. . . . . 6
|
| 98 | expcl 12878 |
. . . . . . 7
| |
| 99 | 23, 7, 98 | syl2an 494 |
. . . . . 6
|
| 100 | 97, 99 | eqeltrd 2701 |
. . . . 5
|
| 101 | absexp 14044 |
. . . . . . 7
| |
| 102 | 23, 7, 101 | syl2an 494 |
. . . . . 6
|
| 103 | 97 | fveq2d 6195 |
. . . . . 6
|
| 104 | 53 | adantl 482 |
. . . . . 6
|
| 105 | 102, 103, 104 | 3eqtr4rd 2667 |
. . . . 5
|
| 106 | 1, 93, 94, 95, 100, 105 | climabs0 14316 |
. . . 4
|
| 107 | 106 | biimpar 502 |
. . 3
|
| 108 | 92, 107 | syldan 487 |
. 2
|
| 109 | 19, 108 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 |
| This theorem is referenced by: explecnv 14597 geolim 14601 geo2lim 14606 iscmet3lem3 23088 mbfi1fseqlem6 23487 geomcau 33555 stoweidlem7 40224 |
| Copyright terms: Public domain | W3C validator |