Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  geomcau Structured version   Visualization version   GIF version

Theorem geomcau 33555
Description: If the distance between consecutive points in a sequence is bounded by a geometric sequence, then the sequence is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
lmclim2.2 (𝜑𝐷 ∈ (Met‘𝑋))
lmclim2.3 (𝜑𝐹:ℕ⟶𝑋)
geomcau.4 (𝜑𝐴 ∈ ℝ)
geomcau.5 (𝜑𝐵 ∈ ℝ+)
geomcau.6 (𝜑𝐵 < 1)
geomcau.7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
Assertion
Ref Expression
geomcau (𝜑𝐹 ∈ (Cau‘𝐷))
Distinct variable groups:   𝐷,𝑘   𝑘,𝐹   𝑘,𝑋   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘

Proof of Theorem geomcau
Dummy variables 𝑗 𝑛 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11723 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 11408 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 geomcau.5 . . . . . . . 8 (𝜑𝐵 ∈ ℝ+)
43rpcnd 11874 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
53rpred 11872 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ)
63rpge0d 11876 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75, 6absidd 14161 . . . . . . . 8 (𝜑 → (abs‘𝐵) = 𝐵)
8 geomcau.6 . . . . . . . 8 (𝜑𝐵 < 1)
97, 8eqbrtrd 4675 . . . . . . 7 (𝜑 → (abs‘𝐵) < 1)
104, 9expcnv 14596 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) ⇝ 0)
11 geomcau.4 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
12 1re 10039 . . . . . . . . . 10 1 ∈ ℝ
13 resubcl 10345 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 − 𝐵) ∈ ℝ)
1412, 5, 13sylancr 695 . . . . . . . . 9 (𝜑 → (1 − 𝐵) ∈ ℝ)
15 posdif 10521 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
165, 12, 15sylancl 694 . . . . . . . . . 10 (𝜑 → (𝐵 < 1 ↔ 0 < (1 − 𝐵)))
178, 16mpbid 222 . . . . . . . . 9 (𝜑 → 0 < (1 − 𝐵))
1814, 17elrpd 11869 . . . . . . . 8 (𝜑 → (1 − 𝐵) ∈ ℝ+)
1911, 18rerpdivcld 11903 . . . . . . 7 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℝ)
2019recnd 10068 . . . . . 6 (𝜑 → (𝐴 / (1 − 𝐵)) ∈ ℂ)
21 nnex 11026 . . . . . . . 8 ℕ ∈ V
2221mptex 6486 . . . . . . 7 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V
2322a1i 11 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ∈ V)
24 nnnn0 11299 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
2524adantl 482 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
26 oveq2 6658 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐵𝑚) = (𝐵𝑛))
27 eqid 2622 . . . . . . . . 9 (𝑚 ∈ ℕ0 ↦ (𝐵𝑚)) = (𝑚 ∈ ℕ0 ↦ (𝐵𝑚))
28 ovex 6678 . . . . . . . . 9 (𝐵𝑛) ∈ V
2926, 27, 28fvmpt 6282 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
3025, 29syl 17 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) = (𝐵𝑛))
31 nnz 11399 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
32 rpexpcl 12879 . . . . . . . . 9 ((𝐵 ∈ ℝ+𝑛 ∈ ℤ) → (𝐵𝑛) ∈ ℝ+)
333, 31, 32syl2an 494 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ+)
3433rpcnd 11874 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℂ)
3530, 34eqeltrd 2701 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛) ∈ ℂ)
3620adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℂ)
3734, 36mulcomd 10061 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
3826oveq1d 6665 . . . . . . . . 9 (𝑚 = 𝑛 → ((𝐵𝑚) · (𝐴 / (1 − 𝐵))) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
39 eqid 2622 . . . . . . . . 9 (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) = (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))
40 ovex 6678 . . . . . . . . 9 ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ V
4138, 39, 40fvmpt 6282 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4241adantl 482 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐵𝑛) · (𝐴 / (1 − 𝐵))))
4330oveq2d 6666 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)) = ((𝐴 / (1 − 𝐵)) · (𝐵𝑛)))
4437, 42, 433eqtr4d 2666 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵))))‘𝑛) = ((𝐴 / (1 − 𝐵)) · ((𝑚 ∈ ℕ0 ↦ (𝐵𝑚))‘𝑛)))
451, 2, 10, 20, 23, 35, 44climmulc2 14367 . . . . 5 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ ((𝐴 / (1 − 𝐵)) · 0))
4620mul01d 10235 . . . . 5 (𝜑 → ((𝐴 / (1 − 𝐵)) · 0) = 0)
4745, 46breqtrd 4679 . . . 4 (𝜑 → (𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0)
4833rpred 11872 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐵𝑛) ∈ ℝ)
4919adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (1 − 𝐵)) ∈ ℝ)
5048, 49remulcld 10070 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
5150recnd 10068 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
521, 2, 23, 42, 51clim0c 14238 . . . 4 (𝜑 → ((𝑚 ∈ ℕ ↦ ((𝐵𝑚) · (𝐴 / (1 − 𝐵)))) ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥))
5347, 52mpbid 222 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥)
54 nnz 11399 . . . . . . . 8 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
5554adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
56 uzid 11702 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
57 oveq2 6658 . . . . . . . . . . 11 (𝑛 = 𝑗 → (𝐵𝑛) = (𝐵𝑗))
5857oveq1d 6665 . . . . . . . . . 10 (𝑛 = 𝑗 → ((𝐵𝑛) · (𝐴 / (1 − 𝐵))) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
5958fveq2d 6195 . . . . . . . . 9 (𝑛 = 𝑗 → (abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) = (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
6059breq1d 4663 . . . . . . . 8 (𝑛 = 𝑗 → ((abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 ↔ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6160rspcv 3305 . . . . . . 7 (𝑗 ∈ (ℤ𝑗) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
6255, 56, 613syl 18 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥))
63 lmclim2.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
6463adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐷 ∈ (Met‘𝑋))
65 lmclim2.3 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶𝑋)
66 simpl 473 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
67 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑗 ∈ ℕ) → (𝐹𝑗) ∈ 𝑋)
6865, 66, 67syl2an 494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
69 eluznn 11758 . . . . . . . . . . . . 13 ((𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗)) → 𝑛 ∈ ℕ)
70 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝐹:ℕ⟶𝑋𝑛 ∈ ℕ) → (𝐹𝑛) ∈ 𝑋)
7165, 69, 70syl2an 494 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐹𝑛) ∈ 𝑋)
72 metcl 22137 . . . . . . . . . . . 12 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑗) ∈ 𝑋 ∧ (𝐹𝑛) ∈ 𝑋) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
7364, 68, 71, 72syl3anc 1326 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
74 eqid 2622 . . . . . . . . . . . . 13 (ℤ𝑗) = (ℤ𝑗)
75 nnnn0 11299 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
7675ad2antrl 764 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ0)
7776nn0zd 11480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℤ)
78 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑘 → (𝐵𝑚) = (𝐵𝑘))
7978oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑚 = 𝑘 → (𝐴 · (𝐵𝑚)) = (𝐴 · (𝐵𝑘)))
80 eqid 2622 . . . . . . . . . . . . . . 15 (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚))) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))
81 ovex 6678 . . . . . . . . . . . . . . 15 (𝐴 · (𝐵𝑘)) ∈ V
8279, 80, 81fvmpt 6282 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8382adantl 482 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · (𝐵𝑘)))
8411ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐴 ∈ ℝ)
855ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐵 ∈ ℝ)
86 eluznn0 11757 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8776, 86sylan 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ0)
8885, 87reexpcld 13025 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ)
8984, 88remulcld 10070 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
9089recnd 10068 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · (𝐵𝑘)) ∈ ℂ)
9111recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ ℂ)
9291adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐴 ∈ ℂ)
934adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℂ)
949adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘𝐵) < 1)
95 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚)) = (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))
96 ovex 6678 . . . . . . . . . . . . . . . . . 18 (𝐵𝑘) ∈ V
9778, 95, 96fvmpt 6282 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ𝑗) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9897adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) = (𝐵𝑘))
9993, 94, 76, 98geolim2 14602 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))) ⇝ ((𝐵𝑗) / (1 − 𝐵)))
10088recnd 10068 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℂ)
10198, 100eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘) ∈ ℂ)
10298oveq2d 6666 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)) = (𝐴 · (𝐵𝑘)))
10383, 102eqtr4d 2659 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))‘𝑘) = (𝐴 · ((𝑚 ∈ (ℤ𝑗) ↦ (𝐵𝑚))‘𝑘)))
10474, 77, 92, 99, 101, 103isermulc2 14388 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))))
1053adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝐵 ∈ ℝ+)
106105, 77rpexpcld 13032 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℝ+)
107106rpcnd 11874 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐵𝑗) ∈ ℂ)
10814recnd 10068 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ∈ ℂ)
109108adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ∈ ℂ)
11018rpne0d 11877 . . . . . . . . . . . . . . . 16 (𝜑 → (1 − 𝐵) ≠ 0)
111110adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (1 − 𝐵) ≠ 0)
11292, 107, 109, 111div12d 10837 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
113104, 112breqtrd 4679 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
11474, 77, 83, 90, 113isumclim 14488 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) = ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
115 seqex 12803 . . . . . . . . . . . . . . 15 seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ V
116 ovex 6678 . . . . . . . . . . . . . . 15 (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) ∈ V
117115, 116breldm 5329 . . . . . . . . . . . . . 14 (seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ⇝ (𝐴 · ((𝐵𝑗) / (1 − 𝐵))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
118104, 117syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → seq𝑗( + , (𝑚 ∈ (ℤ𝑗) ↦ (𝐴 · (𝐵𝑚)))) ∈ dom ⇝ )
11974, 77, 83, 89, 118isumrecl 14496 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)) ∈ ℝ)
120114, 119eqeltrrd 2702 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℝ)
121120recnd 10068 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ∈ ℂ)
122121abscld 14175 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
123 fzfid 12772 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ∈ Fin)
124 simpll 790 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝜑)
125 elfzuz 12338 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑗...(𝑛 − 1)) → 𝑘 ∈ (ℤ𝑗))
126 simprl 794 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ ℕ)
127 eluznn 11758 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
128126, 127sylan 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
129125, 128sylan2 491 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → 𝑘 ∈ ℕ)
13063adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
13165ffvelrnda 6359 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ 𝑋)
132 peano2nn 11032 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
133 ffvelrn 6357 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝑋 ∧ (𝑘 + 1) ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
13465, 132, 133syl2an 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ 𝑋)
135 metcl 22137 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
136130, 131, 134, 135syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
137124, 129, 136syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
138123, 137fsumrecl 14465 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ∈ ℝ)
139 simprr 796 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑗))
140 elfzuz 12338 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑗...𝑛) → 𝑘 ∈ (ℤ𝑗))
141 simpll 790 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
142141, 128, 131syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
143140, 142sylan2 491 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...𝑛)) → (𝐹𝑘) ∈ 𝑋)
14464, 139, 143mettrifi 33553 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
145125, 89sylan2 491 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → (𝐴 · (𝐵𝑘)) ∈ ℝ)
146123, 145fsumrecl 14465 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ∈ ℝ)
147 geomcau.7 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
148124, 129, 147syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑗...(𝑛 − 1))) → ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘)))
149123, 137, 145, 148fsumle 14531 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)))
150 fzssuz 12382 . . . . . . . . . . . . . . . 16 (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗)
151150a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (𝑗...(𝑛 − 1)) ⊆ (ℤ𝑗))
152 0red 10041 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ∈ ℝ)
153 nnz 11399 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
154 rpexpcl 12879 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ ℝ+𝑘 ∈ ℤ) → (𝐵𝑘) ∈ ℝ+)
1553, 153, 154syl2an 494 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝐵𝑘) ∈ ℝ+)
156136, 155rerpdivcld 11903 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ∈ ℝ)
15711adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
158 metge0 22150 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹𝑘) ∈ 𝑋 ∧ (𝐹‘(𝑘 + 1)) ∈ 𝑋) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
159130, 131, 134, 158syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))))
160136, 155, 159divge0d 11912 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)))
161136, 157, 155ledivmul2d 11926 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → ((((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴 ↔ ((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (𝐵𝑘))))
162147, 161mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) / (𝐵𝑘)) ≤ 𝐴)
163152, 156, 157, 160, 162letrd 10194 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → 0 ≤ 𝐴)
164141, 128, 163syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ 𝐴)
165141, 128, 155syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐵𝑘) ∈ ℝ+)
166165rpge0d 11876 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐵𝑘))
16784, 88, 164, 166mulge0d 10604 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (ℤ𝑗)) → 0 ≤ (𝐴 · (𝐵𝑘)))
16874, 77, 123, 151, 83, 89, 167, 118isumless 14577 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))(𝐴 · (𝐵𝑘)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
169138, 146, 119, 149, 168letrd 10194 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑗...(𝑛 − 1))((𝐹𝑘)𝐷(𝐹‘(𝑘 + 1))) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
17073, 138, 119, 144, 169letrd 10194 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ Σ𝑘 ∈ (ℤ𝑗)(𝐴 · (𝐵𝑘)))
171170, 114breqtrd 4679 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ ((𝐵𝑗) · (𝐴 / (1 − 𝐵))))
172120leabsd 14153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐵𝑗) · (𝐴 / (1 − 𝐵))) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17373, 120, 122, 171, 172letrd 10194 . . . . . . . . . 10 ((𝜑 ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
174173adantlr 751 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))))
17573adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ)
176122adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ)
177 rpre 11839 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
178177ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
179 lelttr 10128 . . . . . . . . . 10 ((((𝐹𝑗)𝐷(𝐹𝑛)) ∈ ℝ ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
180175, 176, 178, 179syl3anc 1326 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((((𝐹𝑗)𝐷(𝐹𝑛)) ≤ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) ∧ (abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥) → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
181174, 180mpand 711 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑗))) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
182181anassrs 680 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
183182ralrimdva 2969 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((abs‘((𝐵𝑗) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18462, 183syld 47 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
185184reximdva 3017 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
186185ralimdva 2962 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)(abs‘((𝐵𝑛) · (𝐴 / (1 − 𝐵)))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
18753, 186mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥)
188 metxmet 22139 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
18963, 188syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
190 eqidd 2623 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = (𝐹𝑛))
191 eqidd 2623 . . 3 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
1921, 189, 2, 190, 191, 65iscauf 23078 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑛 ∈ (ℤ𝑗)((𝐹𝑗)𝐷(𝐹𝑛)) < 𝑥))
193187, 192mpbird 247 1 (𝜑𝐹 ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  +crp 11832  ...cfz 12326  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416  ∞Metcxmt 19731  Metcme 19732  Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-cau 23054
This theorem is referenced by:  bfplem1  33621
  Copyright terms: Public domain W3C validator