MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expmulnbnd Structured version   Visualization version   GIF version

Theorem expmulnbnd 12996
Description: Exponentiation with a mantissa greater than 1 is not bounded by any linear function. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
expmulnbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Distinct variable groups:   𝑗,𝑘,𝐴   𝐵,𝑗,𝑘

Proof of Theorem expmulnbnd
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 2re 11090 . . . . 5 2 ∈ ℝ
2 simp1 1061 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐴 ∈ ℝ)
3 remulcl 10021 . . . . 5 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
41, 2, 3sylancr 695 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (2 · 𝐴) ∈ ℝ)
5 simp3 1063 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 1 < 𝐵)
6 1re 10039 . . . . . 6 1 ∈ ℝ
7 simp2 1062 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → 𝐵 ∈ ℝ)
8 difrp 11868 . . . . . 6 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
96, 7, 8sylancr 695 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (1 < 𝐵 ↔ (𝐵 − 1) ∈ ℝ+))
105, 9mpbid 222 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → (𝐵 − 1) ∈ ℝ+)
114, 10rerpdivcld 11903 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ)
12 expnbnd 12993 . . 3 ((((2 · 𝐴) / (𝐵 − 1)) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
1311, 7, 5, 12syl3anc 1326 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑛 ∈ ℕ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
14 2nn0 11309 . . . 4 2 ∈ ℕ0
15 nnnn0 11299 . . . . 5 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1615ad2antrl 764 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ0)
17 nn0mulcl 11329 . . . 4 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
1814, 16, 17sylancr 695 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ0)
192ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℝ)
20 2nn 11185 . . . . . . . . 9 2 ∈ ℕ
21 simprl 794 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → 𝑛 ∈ ℕ)
22 nnmulcl 11043 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2320, 21, 22sylancr 695 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → (2 · 𝑛) ∈ ℕ)
24 eluznn 11758 . . . . . . . 8 (((2 · 𝑛) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2523, 24sylan 488 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ)
2625nnred 11035 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℝ)
2719, 26remulcld 10070 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ∈ ℝ)
28 0re 10040 . . . . . . . 8 0 ∈ ℝ
29 ifcl 4130 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
3019, 28, 29sylancl 694 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ)
31 remulcl 10021 . . . . . . 7 ((2 ∈ ℝ ∧ if(0 ≤ 𝐴, 𝐴, 0) ∈ ℝ) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
321, 30, 31sylancr 695 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ)
33 simplrl 800 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ)
3433nnred 11035 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℝ)
3526, 34resubcld 10458 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℝ)
3632, 35remulcld 10070 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) ∈ ℝ)
377ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℝ)
3825nnnn0d 11351 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℕ0)
39 reexpcl 12877 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℝ)
4037, 38, 39syl2anc 693 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑘) ∈ ℝ)
41 remulcl 10021 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝑘𝑛) ∈ ℝ) → (2 · (𝑘𝑛)) ∈ ℝ)
421, 35, 41sylancr 695 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) ∈ ℝ)
4338nn0ge0d 11354 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝑘)
44 max1 12016 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
4528, 19, 44sylancr 695 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ if(0 ≤ 𝐴, 𝐴, 0))
46 remulcl 10021 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (2 · 𝑛) ∈ ℝ)
471, 34, 46sylancr 695 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ∈ ℝ)
48 eluzle 11700 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → (2 · 𝑛) ≤ 𝑘)
4948adantl 482 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) ≤ 𝑘)
5047, 26, 26, 49leadd2dd 10642 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (𝑘 + 𝑘))
5126recnd 10068 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℂ)
52512timesd 11275 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) = (𝑘 + 𝑘))
5350, 52breqtrrd 4681 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘))
54 remulcl 10021 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (2 · 𝑘) ∈ ℝ)
551, 26, 54sylancr 695 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑘) ∈ ℝ)
56 leaddsub 10504 . . . . . . . . . 10 ((𝑘 ∈ ℝ ∧ (2 · 𝑛) ∈ ℝ ∧ (2 · 𝑘) ∈ ℝ) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5726, 47, 55, 56syl3anc 1326 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝑘 + (2 · 𝑛)) ≤ (2 · 𝑘) ↔ 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛))))
5853, 57mpbid 222 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ ((2 · 𝑘) − (2 · 𝑛)))
59 2cnd 11093 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 2 ∈ ℂ)
6034recnd 10068 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℂ)
6159, 51, 60subdid 10486 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
6258, 61breqtrrd 4681 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ≤ (2 · (𝑘𝑛)))
63 max2 12018 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6428, 19, 63sylancr 695 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ≤ if(0 ≤ 𝐴, 𝐴, 0))
6526, 42, 19, 30, 43, 45, 62, 64lemul12bd 10967 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘 · 𝐴) ≤ ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
6619recnd 10068 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐴 ∈ ℂ)
6766, 51mulcomd 10061 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) = (𝑘 · 𝐴))
6830recnd 10068 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → if(0 ≤ 𝐴, 𝐴, 0) ∈ ℂ)
6935recnd 10068 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℂ)
7059, 68, 69mul32d 10246 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) = ((2 · (𝑘𝑛)) · if(0 ≤ 𝐴, 𝐴, 0)))
7165, 67, 703brtr4d 4685 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) ≤ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)))
7210ad2antrr 762 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ+)
7372rpred 11872 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℝ)
7473, 35remulcld 10070 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ)
7533nnnn0d 11351 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℕ0)
76 reexpcl 12877 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℕ0) → (𝐵𝑛) ∈ ℝ)
7737, 75, 76syl2anc 693 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℝ)
7874, 77remulcld 10070 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) ∈ ℝ)
79 simplrr 801 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))
801, 19, 3sylancr 695 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) ∈ ℝ)
8180, 77, 72ltdivmuld 11923 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛) ↔ (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛))))
8279, 81mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)))
835ad2antrr 762 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 < 𝐵)
84 posdif 10521 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
856, 37, 84sylancr 695 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (1 < 𝐵 ↔ 0 < (𝐵 − 1)))
8683, 85mpbid 222 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵 − 1))
8733nnzd 11481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑛 ∈ ℤ)
8828a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ∈ ℝ)
896a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 1 ∈ ℝ)
90 0lt1 10550 . . . . . . . . . . . . 13 0 < 1
9190a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 1)
9288, 89, 37, 91, 83lttrd 10198 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < 𝐵)
93 expgt0 12893 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℤ ∧ 0 < 𝐵) → 0 < (𝐵𝑛))
9437, 87, 92, 93syl3anc 1326 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝐵𝑛))
9573, 77, 86, 94mulgt0d 10192 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < ((𝐵 − 1) · (𝐵𝑛)))
96 oveq2 6658 . . . . . . . . . . 11 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 𝐴) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
9796breq1d 4663 . . . . . . . . . 10 (𝐴 = if(0 ≤ 𝐴, 𝐴, 0) → ((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
98 2t0e0 11183 . . . . . . . . . . . 12 (2 · 0) = 0
99 oveq2 6658 . . . . . . . . . . . 12 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (2 · 0) = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
10098, 99syl5eqr 2670 . . . . . . . . . . 11 (0 = if(0 ≤ 𝐴, 𝐴, 0) → 0 = (2 · if(0 ≤ 𝐴, 𝐴, 0)))
101100breq1d 4663 . . . . . . . . . 10 (0 = if(0 ≤ 𝐴, 𝐴, 0) → (0 < ((𝐵 − 1) · (𝐵𝑛)) ↔ (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛))))
10297, 101ifboth 4124 . . . . . . . . 9 (((2 · 𝐴) < ((𝐵 − 1) · (𝐵𝑛)) ∧ 0 < ((𝐵 − 1) · (𝐵𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10382, 95, 102syl2anc 693 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)))
10473, 77remulcld 10070 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ)
105 simpr 477 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(2 · 𝑛)))
106602timesd 11275 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (2 · 𝑛) = (𝑛 + 𝑛))
107106fveq2d 6195 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (ℤ‘(2 · 𝑛)) = (ℤ‘(𝑛 + 𝑛)))
108105, 107eleqtrd 2703 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ (ℤ‘(𝑛 + 𝑛)))
109 eluzsub 11717 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(𝑛 + 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
11087, 87, 108, 109syl3anc 1326 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ (ℤ𝑛))
111 eluznn 11758 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ (𝑘𝑛) ∈ (ℤ𝑛)) → (𝑘𝑛) ∈ ℕ)
11233, 110, 111syl2anc 693 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ)
113112nngt0d 11064 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 < (𝑘𝑛))
114 ltmul1 10873 . . . . . . . . 9 (((2 · if(0 ≤ 𝐴, 𝐴, 0)) ∈ ℝ ∧ ((𝐵 − 1) · (𝐵𝑛)) ∈ ℝ ∧ ((𝑘𝑛) ∈ ℝ ∧ 0 < (𝑘𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
11532, 104, 35, 113, 114syl112anc 1330 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) < ((𝐵 − 1) · (𝐵𝑛)) ↔ ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛))))
116103, 115mpbid 222 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)))
11773recnd 10068 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵 − 1) ∈ ℂ)
11877recnd 10068 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵𝑛) ∈ ℂ)
119117, 118, 69mul32d 10246 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝐵𝑛)) · (𝑘𝑛)) = (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
120116, 119breqtrd 4679 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)))
121 peano2re 10209 . . . . . . . . . 10 (((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
12274, 121syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ∈ ℝ)
123112nnnn0d 11351 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝑘𝑛) ∈ ℕ0)
124 reexpcl 12877 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12537, 123, 124syl2anc 693 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) ∈ ℝ)
12674ltp1d 10954 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (((𝐵 − 1) · (𝑘𝑛)) + 1))
12788, 37, 92ltled 10185 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 0 ≤ 𝐵)
128 bernneq2 12991 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝑘𝑛) ∈ ℕ0 ∧ 0 ≤ 𝐵) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
12937, 123, 127, 128syl3anc 1326 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) + 1) ≤ (𝐵↑(𝑘𝑛)))
13074, 122, 125, 126, 129ltletrd 10197 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < (𝐵↑(𝑘𝑛)))
13137recnd 10068 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ∈ ℂ)
13292gt0ne0d 10592 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝐵 ≠ 0)
133 eluzelz 11697 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘(2 · 𝑛)) → 𝑘 ∈ ℤ)
134133adantl 482 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → 𝑘 ∈ ℤ)
135 expsub 12908 . . . . . . . . 9 (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
136131, 132, 134, 87, 135syl22anc 1327 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐵↑(𝑘𝑛)) = ((𝐵𝑘) / (𝐵𝑛)))
137130, 136breqtrd 4679 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛)))
138 ltmuldiv 10896 . . . . . . . 8 ((((𝐵 − 1) · (𝑘𝑛)) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ ∧ ((𝐵𝑛) ∈ ℝ ∧ 0 < (𝐵𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
13974, 40, 77, 94, 138syl112anc 1330 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘) ↔ ((𝐵 − 1) · (𝑘𝑛)) < ((𝐵𝑘) / (𝐵𝑛))))
140137, 139mpbird 247 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (((𝐵 − 1) · (𝑘𝑛)) · (𝐵𝑛)) < (𝐵𝑘))
14136, 78, 40, 120, 140lttrd 10198 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → ((2 · if(0 ≤ 𝐴, 𝐴, 0)) · (𝑘𝑛)) < (𝐵𝑘))
14227, 36, 40, 71, 141lelttrd 10195 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) ∧ 𝑘 ∈ (ℤ‘(2 · 𝑛))) → (𝐴 · 𝑘) < (𝐵𝑘))
143142ralrimiva 2966 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘))
144 fveq2 6191 . . . . 5 (𝑗 = (2 · 𝑛) → (ℤ𝑗) = (ℤ‘(2 · 𝑛)))
145144raleqdv 3144 . . . 4 (𝑗 = (2 · 𝑛) → (∀𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘) ↔ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)))
146145rspcev 3309 . . 3 (((2 · 𝑛) ∈ ℕ0 ∧ ∀𝑘 ∈ (ℤ‘(2 · 𝑛))(𝐴 · 𝑘) < (𝐵𝑘)) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14718, 143, 146syl2anc 693 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ ((2 · 𝐴) / (𝐵 − 1)) < (𝐵𝑛))) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
14813, 147rexlimddv 3035 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 1 < 𝐵) → ∃𝑗 ∈ ℕ0𝑘 ∈ (ℤ𝑗)(𝐴 · 𝑘) < (𝐵𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-seq 12802  df-exp 12861
This theorem is referenced by:  geomulcvg  14607
  Copyright terms: Public domain W3C validator