![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > friendship | Structured version Visualization version GIF version |
Description: The friendship theorem: In every finite (nonempty) friendship graph there is a vertex which is adjacent to all other vertices. This is Metamath 100 proof #83. (Contributed by Alexander van der Vekens, 9-Oct-2018.) |
Ref | Expression |
---|---|
friendship.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
friendship | ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1067 | . . . 4 ⊢ ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝐺 ∈ FriendGraph ) | |
2 | simpr3 1069 | . . . 4 ⊢ ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 𝑉 ∈ Fin) | |
3 | simpl 473 | . . . 4 ⊢ ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → 3 < (#‘𝑉)) | |
4 | friendship.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 4 | friendshipgt3 27256 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 3 < (#‘𝑉)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
6 | 1, 2, 3, 5 | syl3anc 1326 | . . 3 ⊢ ((3 < (#‘𝑉) ∧ (𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin)) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
7 | 6 | ex 450 | . 2 ⊢ (3 < (#‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
8 | hashcl 13147 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0) | |
9 | simplr 792 | . . . . . . . . . . 11 ⊢ ((((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → 𝑉 ∈ Fin) | |
10 | hashge1 13178 | . . . . . . . . . . . 12 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 1 ≤ (#‘𝑉)) | |
11 | 10 | ad2ant2l 782 | . . . . . . . . . . 11 ⊢ ((((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → 1 ≤ (#‘𝑉)) |
12 | nn0re 11301 | . . . . . . . . . . . . . . . . 17 ⊢ ((#‘𝑉) ∈ ℕ0 → (#‘𝑉) ∈ ℝ) | |
13 | 3re 11094 | . . . . . . . . . . . . . . . . 17 ⊢ 3 ∈ ℝ | |
14 | lenlt 10116 | . . . . . . . . . . . . . . . . 17 ⊢ (((#‘𝑉) ∈ ℝ ∧ 3 ∈ ℝ) → ((#‘𝑉) ≤ 3 ↔ ¬ 3 < (#‘𝑉))) | |
15 | 12, 13, 14 | sylancl 694 | . . . . . . . . . . . . . . . 16 ⊢ ((#‘𝑉) ∈ ℕ0 → ((#‘𝑉) ≤ 3 ↔ ¬ 3 < (#‘𝑉))) |
16 | 15 | biimprd 238 | . . . . . . . . . . . . . . 15 ⊢ ((#‘𝑉) ∈ ℕ0 → (¬ 3 < (#‘𝑉) → (#‘𝑉) ≤ 3)) |
17 | 16 | adantr 481 | . . . . . . . . . . . . . 14 ⊢ (((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (¬ 3 < (#‘𝑉) → (#‘𝑉) ≤ 3)) |
18 | 17 | com12 32 | . . . . . . . . . . . . 13 ⊢ (¬ 3 < (#‘𝑉) → (((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (#‘𝑉) ≤ 3)) |
19 | 18 | adantr 481 | . . . . . . . . . . . 12 ⊢ ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) → (#‘𝑉) ≤ 3)) |
20 | 19 | impcom 446 | . . . . . . . . . . 11 ⊢ ((((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → (#‘𝑉) ≤ 3) |
21 | 9, 11, 20 | 3jca 1242 | . . . . . . . . . 10 ⊢ ((((#‘𝑉) ∈ ℕ0 ∧ 𝑉 ∈ Fin) ∧ (¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅)) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3)) |
22 | 21 | exp31 630 | . . . . . . . . 9 ⊢ ((#‘𝑉) ∈ ℕ0 → (𝑉 ∈ Fin → ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3)))) |
23 | 8, 22 | mpcom 38 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3))) |
24 | 23 | impcom 446 | . . . . . . 7 ⊢ (((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3)) |
25 | hash1to3 13273 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (#‘𝑉) ∧ (#‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
26 | vex 3203 | . . . . . . . . . 10 ⊢ 𝑎 ∈ V | |
27 | eqid 2622 | . . . . . . . . . . 11 ⊢ (Edg‘𝐺) = (Edg‘𝐺) | |
28 | 4, 27 | 1to3vfriendship 27145 | . . . . . . . . . 10 ⊢ ((𝑎 ∈ V ∧ (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
29 | 26, 28 | mpan 706 | . . . . . . . . 9 ⊢ ((𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
30 | 29 | exlimiv 1858 | . . . . . . . 8 ⊢ (∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
31 | 30 | exlimivv 1860 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
32 | 24, 25, 31 | 3syl 18 | . . . . . 6 ⊢ (((¬ 3 < (#‘𝑉) ∧ 𝑉 ≠ ∅) ∧ 𝑉 ∈ Fin) → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
33 | 32 | exp31 630 | . . . . 5 ⊢ (¬ 3 < (#‘𝑉) → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
34 | 33 | com14 96 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ≠ ∅ → (𝑉 ∈ Fin → (¬ 3 < (#‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))))) |
35 | 34 | 3imp 1256 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → (¬ 3 < (#‘𝑉) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
36 | 35 | com12 32 | . 2 ⊢ (¬ 3 < (#‘𝑉) → ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺))) |
37 | 7, 36 | pm2.61i 176 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ≠ ∅ ∧ 𝑉 ∈ Fin) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ (Edg‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∨ w3o 1036 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∖ cdif 3571 ∅c0 3915 {csn 4177 {cpr 4179 {ctp 4181 class class class wbr 4653 ‘cfv 5888 Fincfn 7955 ℝcr 9935 1c1 9937 < clt 10074 ≤ cle 10075 3c3 11071 ℕ0cn0 11292 #chash 13117 Vtxcvtx 25874 Edgcedg 25939 FriendGraph cfrgr 27120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-3o 7562 df-oadd 7564 df-er 7742 df-ec 7744 df-qs 7748 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-ac 8939 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-rp 11833 df-xadd 11947 df-ico 12181 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-word 13299 df-lsw 13300 df-concat 13301 df-s1 13302 df-substr 13303 df-reps 13306 df-csh 13535 df-s2 13593 df-s3 13594 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-dvds 14984 df-gcd 15217 df-prm 15386 df-phi 15471 df-vtx 25876 df-iedg 25877 df-edg 25940 df-uhgr 25953 df-ushgr 25954 df-upgr 25977 df-umgr 25978 df-uspgr 26045 df-usgr 26046 df-fusgr 26209 df-nbgr 26228 df-vtxdg 26362 df-rgr 26453 df-rusgr 26454 df-wlks 26495 df-wlkson 26496 df-trls 26589 df-trlson 26590 df-pths 26612 df-spths 26613 df-pthson 26614 df-spthson 26615 df-wwlks 26722 df-wwlksn 26723 df-wwlksnon 26724 df-wspthsn 26725 df-wspthsnon 26726 df-clwwlks 26877 df-clwwlksn 26878 df-conngr 27047 df-frgr 27121 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |