MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logsqvma Structured version   Visualization version   GIF version

Theorem logsqvma 25231
Description: A formula for log↑2(𝑁) in terms of the primes. Equation 10.4.6 of [Shapiro], p. 418. (Contributed by Mario Carneiro, 13-May-2016.)
Assertion
Ref Expression
logsqvma (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Distinct variable group:   𝑢,𝑑,𝑥,𝑁

Proof of Theorem logsqvma
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
2 dvdsssfz1 15040 . . . 4 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁))
3 ssfi 8180 . . . 4 (((1...𝑁) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
41, 2, 3syl2anc 693 . . 3 (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∈ Fin)
5 fzfid 12772 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...𝑑) ∈ Fin)
6 elrabi 3359 . . . . . . 7 (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} → 𝑑 ∈ ℕ)
76adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℕ)
8 dvdsssfz1 15040 . . . . . 6 (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
97, 8syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑))
10 ssfi 8180 . . . . 5 (((1...𝑑) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ⊆ (1...𝑑)) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
115, 9, 10syl2anc 693 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥𝑑} ∈ Fin)
12 elrabi 3359 . . . . . . . . 9 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢 ∈ ℕ)
1312ad2antll 765 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢 ∈ ℕ)
14 vmacl 24844 . . . . . . . 8 (𝑢 ∈ ℕ → (Λ‘𝑢) ∈ ℝ)
1513, 14syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘𝑢) ∈ ℝ)
16 breq1 4656 . . . . . . . . . . . 12 (𝑥 = 𝑢 → (𝑥𝑑𝑢𝑑))
1716elrab 3363 . . . . . . . . . . 11 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢𝑑))
1817simprbi 480 . . . . . . . . . 10 (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} → 𝑢𝑑)
1918ad2antll 765 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑢𝑑)
206ad2antrl 764 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → 𝑑 ∈ ℕ)
21 nndivdvds 14989 . . . . . . . . . 10 ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2220, 13, 21syl2anc 693 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑢𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ))
2319, 22mpbid 222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (𝑑 / 𝑢) ∈ ℕ)
24 vmacl 24844 . . . . . . . 8 ((𝑑 / 𝑢) ∈ ℕ → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2523, 24syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ)
2615, 25remulcld 10070 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℝ)
2726recnd 10068 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑})) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2827anassrs 680 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
2911, 28fsumcl 14464 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ)
30 vmacl 24844 . . . . . 6 (𝑑 ∈ ℕ → (Λ‘𝑑) ∈ ℝ)
317, 30syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑑) ∈ ℝ)
327nnrpd 11870 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑑 ∈ ℝ+)
3332relogcld 24369 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑑) ∈ ℝ)
3431, 33remulcld 10070 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℝ)
3534recnd 10068 . . 3 ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
364, 29, 35fsumadd 14470 . 2 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
37 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
38 oveq1 6657 . . . . . . 7 (𝑑 = (𝑢 · 𝑘) → (𝑑 / 𝑢) = ((𝑢 · 𝑘) / 𝑢))
3938fveq2d 6195 . . . . . 6 (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢)))
4039oveq2d 6666 . . . . 5 (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
4137, 40, 27fsumdvdscom 24911 . . . 4 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
42 ssrab2 3687 . . . . . . . . . . . . 13 {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ
43 simpr 477 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)})
4442, 43sseldi 3601 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ)
4544nncnd 11036 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ)
46 ssrab2 3687 . . . . . . . . . . . . . 14 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
47 simpr 477 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4846, 47sseldi 3601 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℕ)
4948nncnd 11036 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℂ)
5049adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ)
5148nnne0d 11065 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ≠ 0)
5251adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0)
5345, 50, 52divcan3d 10806 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘)
5453fveq2d 6195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘))
5554sumeq2dv 14433 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘))
56 dvdsdivcl 15038 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
5746, 56sseldi 3601 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑢) ∈ ℕ)
58 vmasum 24941 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
5957, 58syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢)))
60 nnrp 11842 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
6160adantr 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑁 ∈ ℝ+)
6248nnrpd 11870 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → 𝑢 ∈ ℝ+)
6361, 62relogdivd 24372 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6455, 59, 633eqtrd 2660 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢)))
6564oveq2d 6666 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))))
66 fzfid 12772 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin)
67 dvdsssfz1 15040 . . . . . . . . 9 ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
6857, 67syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢)))
69 ssfi 8180 . . . . . . . 8 (((1...(𝑁 / 𝑢)) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
7066, 68, 69syl2anc 693 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin)
7148, 14syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℝ)
7271recnd 10068 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (Λ‘𝑢) ∈ ℂ)
73 vmacl 24844 . . . . . . . . . 10 (𝑘 ∈ ℕ → (Λ‘𝑘) ∈ ℝ)
7444, 73syl 17 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ)
7574recnd 10068 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ)
7654, 75eqeltrd 2701 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ)
7770, 72, 76fsummulc2 14516 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))))
78 relogcl 24322 . . . . . . . . 9 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℝ)
7978recnd 10068 . . . . . . . 8 (𝑁 ∈ ℝ+ → (log‘𝑁) ∈ ℂ)
8061, 79syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑁) ∈ ℂ)
8162relogcld 24369 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℝ)
8281recnd 10068 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (log‘𝑢) ∈ ℂ)
8372, 80, 82subdid 10486 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8465, 77, 833eqtr3d 2664 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8584sumeq2dv 14433 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))))
8672, 80mulcld 10060 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈ ℂ)
8772, 82mulcld 10060 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈ ℂ)
884, 86, 87fsumsub 14520 . . . . 5 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))))
8960, 79syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (log‘𝑁) ∈ ℂ)
9089sqvald 13005 . . . . . . 7 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) = ((log‘𝑁) · (log‘𝑁)))
91 vmasum 24941 . . . . . . . 8 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) = (log‘𝑁))
9291oveq1d 6665 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁)))
934, 89, 72fsummulc1 14517 . . . . . . 7 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)))
9490, 92, 933eqtr2rd 2663 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2))
95 fveq2 6191 . . . . . . . . 9 (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑))
96 fveq2 6191 . . . . . . . . 9 (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑))
9795, 96oveq12d 6668 . . . . . . . 8 (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑)))
9897cbvsumv 14426 . . . . . . 7 Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))
9998a1i 11 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)))
10094, 99oveq12d 6668 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10188, 100eqtrd 2656 . . . 4 (𝑁 ∈ ℕ → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10241, 85, 1013eqtrd 2660 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
103102oveq1d 6665 . 2 (𝑁 ∈ ℕ → (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))))
10489sqcld 13006 . . 3 (𝑁 ∈ ℕ → ((log‘𝑁)↑2) ∈ ℂ)
1054, 35fsumcl 14464 . . 3 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ)
106104, 105npcand 10396 . 2 (𝑁 ∈ ℕ → ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
10736, 103, 1063eqtrd 2660 1 (𝑁 ∈ ℕ → Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  +crp 11832  ...cfz 12326  cexp 12860  Σcsu 14416  cdvds 14983  logclog 24301  Λcvma 24818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824
This theorem is referenced by:  logsqvma2  25232
  Copyright terms: Public domain W3C validator