| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 12772 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(1...𝑁) ∈
Fin) |
| 2 | | dvdsssfz1 15040 |
. . . 4
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) |
| 3 | | ssfi 8180 |
. . . 4
⊢
(((1...𝑁) ∈ Fin
∧ {𝑥 ∈ ℕ
∣ 𝑥 ∥ 𝑁} ⊆ (1...𝑁)) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . 3
⊢ (𝑁 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∈ Fin) |
| 5 | | fzfid 12772 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (1...𝑑) ∈ Fin) |
| 6 | | elrabi 3359 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} → 𝑑 ∈ ℕ) |
| 7 | 6 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℕ) |
| 8 | | dvdsssfz1 15040 |
. . . . . 6
⊢ (𝑑 ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) |
| 10 | | ssfi 8180 |
. . . . 5
⊢
(((1...𝑑) ∈ Fin
∧ {𝑥 ∈ ℕ
∣ 𝑥 ∥ 𝑑} ⊆ (1...𝑑)) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ∈ Fin) |
| 11 | 5, 9, 10 | syl2anc 693 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ∈ Fin) |
| 12 | | elrabi 3359 |
. . . . . . . . 9
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} → 𝑢 ∈ ℕ) |
| 13 | 12 | ad2antll 765 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑢 ∈ ℕ) |
| 14 | | vmacl 24844 |
. . . . . . . 8
⊢ (𝑢 ∈ ℕ →
(Λ‘𝑢) ∈
ℝ) |
| 15 | 13, 14 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (Λ‘𝑢) ∈ ℝ) |
| 16 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑢 → (𝑥 ∥ 𝑑 ↔ 𝑢 ∥ 𝑑)) |
| 17 | 16 | elrab 3363 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ↔ (𝑢 ∈ ℕ ∧ 𝑢 ∥ 𝑑)) |
| 18 | 17 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} → 𝑢 ∥ 𝑑) |
| 19 | 18 | ad2antll 765 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑢 ∥ 𝑑) |
| 20 | 6 | ad2antrl 764 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → 𝑑 ∈ ℕ) |
| 21 | | nndivdvds 14989 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (𝑢 ∥ 𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ)) |
| 22 | 20, 13, 21 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (𝑢 ∥ 𝑑 ↔ (𝑑 / 𝑢) ∈ ℕ)) |
| 23 | 19, 22 | mpbid 222 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (𝑑 / 𝑢) ∈ ℕ) |
| 24 | | vmacl 24844 |
. . . . . . . 8
⊢ ((𝑑 / 𝑢) ∈ ℕ →
(Λ‘(𝑑 / 𝑢)) ∈
ℝ) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → (Λ‘(𝑑 / 𝑢)) ∈ ℝ) |
| 26 | 15, 25 | remulcld 10070 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → ((Λ‘𝑢) ·
(Λ‘(𝑑 / 𝑢))) ∈
ℝ) |
| 27 | 26 | recnd 10068 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑})) → ((Λ‘𝑢) ·
(Λ‘(𝑑 / 𝑢))) ∈
ℂ) |
| 28 | 27 | anassrs 680 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑}) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ) |
| 29 | 11, 28 | fsumcl 14464 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) ∈ ℂ) |
| 30 | | vmacl 24844 |
. . . . . 6
⊢ (𝑑 ∈ ℕ →
(Λ‘𝑑) ∈
ℝ) |
| 31 | 7, 30 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑑) ∈ ℝ) |
| 32 | 7 | nnrpd 11870 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑑 ∈ ℝ+) |
| 33 | 32 | relogcld 24369 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑑) ∈ ℝ) |
| 34 | 31, 33 | remulcld 10070 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈
ℝ) |
| 35 | 34 | recnd 10068 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑑) · (log‘𝑑)) ∈
ℂ) |
| 36 | 4, 29, 35 | fsumadd 14470 |
. 2
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = (Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 37 | | id 22 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 38 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑑 = (𝑢 · 𝑘) → (𝑑 / 𝑢) = ((𝑢 · 𝑘) / 𝑢)) |
| 39 | 38 | fveq2d 6195 |
. . . . . 6
⊢ (𝑑 = (𝑢 · 𝑘) → (Λ‘(𝑑 / 𝑢)) = (Λ‘((𝑢 · 𝑘) / 𝑢))) |
| 40 | 39 | oveq2d 6666 |
. . . . 5
⊢ (𝑑 = (𝑢 · 𝑘) → ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
| 41 | 37, 40, 27 | fsumdvdscom 24911 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
| 42 | | ssrab2 3687 |
. . . . . . . . . . . . 13
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ ℕ |
| 43 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) |
| 44 | 42, 43 | sseldi 3601 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℕ) |
| 45 | 44 | nncnd 11036 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑘 ∈ ℂ) |
| 46 | | ssrab2 3687 |
. . . . . . . . . . . . . 14
⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ |
| 47 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 48 | 46, 47 | sseldi 3601 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℕ) |
| 49 | 48 | nncnd 11036 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℂ) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ∈ ℂ) |
| 51 | 48 | nnne0d 11065 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ≠ 0) |
| 52 | 51 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → 𝑢 ≠ 0) |
| 53 | 45, 50, 52 | divcan3d 10806 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → ((𝑢 · 𝑘) / 𝑢) = 𝑘) |
| 54 | 53 | fveq2d 6195 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) = (Λ‘𝑘)) |
| 55 | 54 | sumeq2dv 14433 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘)) |
| 56 | | dvdsdivcl 15038 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑢) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 57 | 46, 56 | sseldi 3601 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑢) ∈ ℕ) |
| 58 | | vmasum 24941 |
. . . . . . . . 9
⊢ ((𝑁 / 𝑢) ∈ ℕ → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢))) |
| 59 | 57, 58 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘𝑘) = (log‘(𝑁 / 𝑢))) |
| 60 | | nnrp 11842 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 61 | 60 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑁 ∈
ℝ+) |
| 62 | 48 | nnrpd 11870 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → 𝑢 ∈ ℝ+) |
| 63 | 61, 62 | relogdivd 24372 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘(𝑁 / 𝑢)) = ((log‘𝑁) − (log‘𝑢))) |
| 64 | 55, 59, 63 | 3eqtrd 2660 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢)) = ((log‘𝑁) − (log‘𝑢))) |
| 65 | 64 | oveq2d 6666 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢)))) |
| 66 | | fzfid 12772 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (1...(𝑁 / 𝑢)) ∈ Fin) |
| 67 | | dvdsssfz1 15040 |
. . . . . . . . 9
⊢ ((𝑁 / 𝑢) ∈ ℕ → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) |
| 68 | 57, 67 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) |
| 69 | | ssfi 8180 |
. . . . . . . 8
⊢
(((1...(𝑁 / 𝑢)) ∈ Fin ∧ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ⊆ (1...(𝑁 / 𝑢))) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin) |
| 70 | 66, 68, 69 | syl2anc 693 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ∈ Fin) |
| 71 | 48, 14 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑢) ∈ ℝ) |
| 72 | 71 | recnd 10068 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (Λ‘𝑢) ∈ ℂ) |
| 73 | | vmacl 24844 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ →
(Λ‘𝑘) ∈
ℝ) |
| 74 | 44, 73 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℝ) |
| 75 | 74 | recnd 10068 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘𝑘) ∈ ℂ) |
| 76 | 54, 75 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) ∧ 𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)}) → (Λ‘((𝑢 · 𝑘) / 𝑢)) ∈ ℂ) |
| 77 | 70, 72, 76 | fsummulc2 14516 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢)))) |
| 78 | | relogcl 24322 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℝ) |
| 79 | 78 | recnd 10068 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℂ) |
| 80 | 61, 79 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑁) ∈ ℂ) |
| 81 | 62 | relogcld 24369 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑢) ∈ ℝ) |
| 82 | 81 | recnd 10068 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (log‘𝑢) ∈ ℂ) |
| 83 | 72, 80, 82 | subdid 10486 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · ((log‘𝑁) − (log‘𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) −
((Λ‘𝑢)
· (log‘𝑢)))) |
| 84 | 65, 77, 83 | 3eqtr3d 2664 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢)))) |
| 85 | 84 | sumeq2dv 14433 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑘 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑁 / 𝑢)} ((Λ‘𝑢) · (Λ‘((𝑢 · 𝑘) / 𝑢))) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢)))) |
| 86 | 72, 80 | mulcld 10060 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · (log‘𝑁)) ∈
ℂ) |
| 87 | 72, 82 | mulcld 10060 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → ((Λ‘𝑢) · (log‘𝑢)) ∈
ℂ) |
| 88 | 4, 86, 87 | fsumsub 14520 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)))) |
| 89 | 60, 79 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(log‘𝑁) ∈
ℂ) |
| 90 | 89 | sqvald 13005 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
((log‘𝑁)↑2) =
((log‘𝑁) ·
(log‘𝑁))) |
| 91 | | vmasum 24941 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) = (log‘𝑁)) |
| 92 | 91 | oveq1d 6665 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁) · (log‘𝑁))) |
| 93 | 4, 89, 72 | fsummulc1 14517 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Λ‘𝑢) · (log‘𝑁)) = Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁))) |
| 94 | 90, 92, 93 | 3eqtr2rd 2663 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) = ((log‘𝑁)↑2)) |
| 95 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (Λ‘𝑢) = (Λ‘𝑑)) |
| 96 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑢 = 𝑑 → (log‘𝑢) = (log‘𝑑)) |
| 97 | 95, 96 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑢 = 𝑑 → ((Λ‘𝑢) · (log‘𝑢)) = ((Λ‘𝑑) · (log‘𝑑))) |
| 98 | 97 | cbvsumv 14426 |
. . . . . . 7
⊢
Σ𝑢 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)) |
| 99 | 98 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢)) = Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) |
| 100 | 94, 99 | oveq12d 6668 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑁)) − Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 101 | 88, 100 | eqtrd 2656 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (((Λ‘𝑢) · (log‘𝑁)) − ((Λ‘𝑢) · (log‘𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 102 | 41, 85, 101 | 3eqtrd 2660 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) = (((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 103 | 102 | oveq1d 6665 |
. 2
⊢ (𝑁 ∈ ℕ →
(Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((((log‘𝑁)↑2) − Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)))) |
| 104 | 89 | sqcld 13006 |
. . 3
⊢ (𝑁 ∈ ℕ →
((log‘𝑁)↑2)
∈ ℂ) |
| 105 | 4, 35 | fsumcl 14464 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑)) ∈ ℂ) |
| 106 | 104, 105 | npcand 10396 |
. 2
⊢ (𝑁 ∈ ℕ →
((((log‘𝑁)↑2)
− Σ𝑑 ∈
{𝑥 ∈ ℕ ∣
𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) + Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) |
| 107 | 36, 103, 106 | 3eqtrd 2660 |
1
⊢ (𝑁 ∈ ℕ →
Σ𝑑 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} (Σ𝑢 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑑} ((Λ‘𝑢) · (Λ‘(𝑑 / 𝑢))) + ((Λ‘𝑑) · (log‘𝑑))) = ((log‘𝑁)↑2)) |