MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim Structured version   Visualization version   Unicode version

Theorem geolim 14601
Description: The partial sums in the infinite series  1  +  A ^ 1  +  A ^ 2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
Hypotheses
Ref Expression
geolim.1  |-  ( ph  ->  A  e.  CC )
geolim.2  |-  ( ph  ->  ( abs `  A
)  <  1 )
geolim.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
Assertion
Ref Expression
geolim  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    ph, k

Proof of Theorem geolim
Dummy variables  j  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . . 3  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 11389 . . 3  |-  ( ph  ->  0  e.  ZZ )
3 geolim.1 . . . . . 6  |-  ( ph  ->  A  e.  CC )
4 geolim.2 . . . . . 6  |-  ( ph  ->  ( abs `  A
)  <  1 )
53, 4expcnv 14596 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
6 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
7 subcl 10280 . . . . . . 7  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  -  A
)  e.  CC )
86, 3, 7sylancr 695 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  CC )
9 1re 10039 . . . . . . . . . . . 12  |-  1  e.  RR
109ltnri 10146 . . . . . . . . . . 11  |-  -.  1  <  1
11 fveq2 6191 . . . . . . . . . . . . 13  |-  ( A  =  1  ->  ( abs `  A )  =  ( abs `  1
) )
12 abs1 14037 . . . . . . . . . . . . 13  |-  ( abs `  1 )  =  1
1311, 12syl6eq 2672 . . . . . . . . . . . 12  |-  ( A  =  1  ->  ( abs `  A )  =  1 )
1413breq1d 4663 . . . . . . . . . . 11  |-  ( A  =  1  ->  (
( abs `  A
)  <  1  <->  1  <  1 ) )
1510, 14mtbiri 317 . . . . . . . . . 10  |-  ( A  =  1  ->  -.  ( abs `  A )  <  1 )
1615necon2ai 2823 . . . . . . . . 9  |-  ( ( abs `  A )  <  1  ->  A  =/=  1 )
174, 16syl 17 . . . . . . . 8  |-  ( ph  ->  A  =/=  1 )
1817necomd 2849 . . . . . . 7  |-  ( ph  ->  1  =/=  A )
19 subeq0 10307 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
206, 3, 19sylancr 695 . . . . . . . 8  |-  ( ph  ->  ( ( 1  -  A )  =  0  <->  1  =  A ) )
2120necon3bid 2838 . . . . . . 7  |-  ( ph  ->  ( ( 1  -  A )  =/=  0  <->  1  =/=  A ) )
2218, 21mpbird 247 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  =/=  0 )
233, 8, 22divcld 10801 . . . . 5  |-  ( ph  ->  ( A  /  (
1  -  A ) )  e.  CC )
24 nn0ex 11298 . . . . . . 7  |-  NN0  e.  _V
2524mptex 6486 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  e.  _V
2625a1i 11 . . . . 5  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  e.  _V )
27 oveq2 6658 . . . . . . . 8  |-  ( n  =  j  ->  ( A ^ n )  =  ( A ^ j
) )
28 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( A ^ n ) )  =  ( n  e. 
NN0  |->  ( A ^
n ) )
29 ovex 6678 . . . . . . . 8  |-  ( A ^ j )  e. 
_V
3027, 28, 29fvmpt 6282 . . . . . . 7  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
3130adantl 482 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  =  ( A ^ j
) )
32 expcl 12878 . . . . . . 7  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ j
)  e.  CC )
333, 32sylan 488 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ j )  e.  CC )
3431, 33eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( A ^ n ) ) `
 j )  e.  CC )
35 expp1 12867 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  j  e.  NN0 )  -> 
( A ^ (
j  +  1 ) )  =  ( ( A ^ j )  x.  A ) )
363, 35sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( ( A ^
j )  x.  A
) )
373adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
3833, 37mulcomd 10061 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ j )  x.  A )  =  ( A  x.  ( A ^ j ) ) )
3936, 38eqtrd 2656 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  =  ( A  x.  ( A ^ j ) ) )
4039oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) ) )
418adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A )  e.  CC )
4222adantr 481 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  -  A )  =/=  0 )
4337, 33, 41, 42div23d 10838 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  x.  ( A ^ j ) )  /  ( 1  -  A ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
4440, 43eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  =  ( ( A  /  (
1  -  A ) )  x.  ( A ^ j ) ) )
45 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  j  ->  (
n  +  1 )  =  ( j  +  1 ) )
4645oveq2d 6666 . . . . . . . . 9  |-  ( n  =  j  ->  ( A ^ ( n  + 
1 ) )  =  ( A ^ (
j  +  1 ) ) )
4746oveq1d 6665 . . . . . . . 8  |-  ( n  =  j  ->  (
( A ^ (
n  +  1 ) )  /  ( 1  -  A ) )  =  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) ) )
48 eqid 2622 . . . . . . . 8  |-  ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) )  =  ( n  e. 
NN0  |->  ( ( A ^ ( n  + 
1 ) )  / 
( 1  -  A
) ) )
49 ovex 6678 . . . . . . . 8  |-  ( ( A ^ ( j  +  1 ) )  /  ( 1  -  A ) )  e. 
_V
5047, 48, 49fvmpt 6282 . . . . . . 7  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
5150adantl 482 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) )
5231oveq2d 6666 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A  /  ( 1  -  A ) )  x.  ( ( n  e. 
NN0  |->  ( A ^
n ) ) `  j ) )  =  ( ( A  / 
( 1  -  A
) )  x.  ( A ^ j ) ) )
5344, 51, 523eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  =  ( ( A  / 
( 1  -  A
) )  x.  (
( n  e.  NN0  |->  ( A ^ n ) ) `  j ) ) )
541, 2, 5, 23, 26, 34, 53climmulc2 14367 . . . 4  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  ( ( A  /  ( 1  -  A ) )  x.  0 ) )
5523mul01d 10235 . . . 4  |-  ( ph  ->  ( ( A  / 
( 1  -  A
) )  x.  0 )  =  0 )
5654, 55breqtrd 4679 . . 3  |-  ( ph  ->  ( n  e.  NN0  |->  ( ( A ^
( n  +  1 ) )  /  (
1  -  A ) ) )  ~~>  0 )
578, 22reccld 10794 . . 3  |-  ( ph  ->  ( 1  /  (
1  -  A ) )  e.  CC )
58 seqex 12803 . . . 4  |-  seq 0
(  +  ,  F
)  e.  _V
5958a1i 11 . . 3  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
_V )
60 peano2nn0 11333 . . . . . 6  |-  ( j  e.  NN0  ->  ( j  +  1 )  e. 
NN0 )
61 expcl 12878 . . . . . 6  |-  ( ( A  e.  CC  /\  ( j  +  1 )  e.  NN0 )  ->  ( A ^ (
j  +  1 ) )  e.  CC )
623, 60, 61syl2an 494 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A ^ ( j  +  1 ) )  e.  CC )
6362, 41, 42divcld 10801 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( A ^ ( j  +  1 ) )  / 
( 1  -  A
) )  e.  CC )
6451, 63eqeltrd 2701 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j )  e.  CC )
65 nn0cn 11302 . . . . . . . 8  |-  ( j  e.  NN0  ->  j  e.  CC )
6665adantl 482 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  CC )
67 pncan 10287 . . . . . . 7  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  +  1 )  -  1 )  =  j )
6866, 6, 67sylancl 694 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
j  +  1 )  -  1 )  =  j )
6968oveq2d 6666 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 0 ... ( ( j  +  1 )  - 
1 ) )  =  ( 0 ... j
) )
7069sumeq1d 14431 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  sum_ k  e.  ( 0 ... j ) ( A ^ k ) )
716a1i 11 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  1  e.  CC )
7271, 62, 41, 42divsubdird 10840 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) )  =  ( ( 1  / 
( 1  -  A
) )  -  (
( A ^ (
j  +  1 ) )  /  ( 1  -  A ) ) ) )
7317adantr 481 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  =/=  1 )
7460adantl 482 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( j  +  1 )  e. 
NN0 )
7537, 73, 74geoser 14599 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  -  ( A ^ ( j  +  1 ) ) )  /  ( 1  -  A ) ) )
7651oveq2d 6666 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) )  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( A ^
( j  +  1 ) )  /  (
1  -  A ) ) ) )
7772, 75, 763eqtr4d 2666 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... (
( j  +  1 )  -  1 ) ) ( A ^
k )  =  ( ( 1  /  (
1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
78 simpll 790 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 0 ... j
) )  ->  ph )
79 elfznn0 12433 . . . . . . 7  |-  ( k  e.  ( 0 ... j )  ->  k  e.  NN0 )
8079adantl 482 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 0 ... j
) )  ->  k  e.  NN0 )
81 geolim.3 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( A ^ k ) )
8278, 80, 81syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 0 ... j
) )  ->  ( F `  k )  =  ( A ^
k ) )
83 simpr 477 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
8483, 1syl6eleq 2711 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ( ZZ>= `  0 )
)
8578, 3syl 17 . . . . . 6  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 0 ... j
) )  ->  A  e.  CC )
8685, 80expcld 13008 . . . . 5  |-  ( ( ( ph  /\  j  e.  NN0 )  /\  k  e.  ( 0 ... j
) )  ->  ( A ^ k )  e.  CC )
8782, 84, 86fsumser 14461 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e.  ( 0 ... j
) ( A ^
k )  =  (  seq 0 (  +  ,  F ) `  j ) )
8870, 77, 873eqtr3rd 2665 . . 3  |-  ( (
ph  /\  j  e.  NN0 )  ->  (  seq 0 (  +  ,  F ) `  j
)  =  ( ( 1  /  ( 1  -  A ) )  -  ( ( n  e.  NN0  |->  ( ( A ^ ( n  +  1 ) )  /  ( 1  -  A ) ) ) `
 j ) ) )
891, 2, 56, 57, 59, 64, 88climsubc2 14369 . 2  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( ( 1  /  ( 1  -  A ) )  -  0 ) )
9057subid1d 10381 . 2  |-  ( ph  ->  ( ( 1  / 
( 1  -  A
) )  -  0 )  =  ( 1  /  ( 1  -  A ) ) )
9189, 90breqtrd 4679 1  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  ( 1  /  ( 1  -  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  geolim2  14602  georeclim  14603  geomulcvg  14607  geoisum  14608  cvgrat  14615  eflegeo  14851  geolim3  24094  abelthlem5  24189  logtayllem  24405  zetacvg  24741  knoppcnlem6  32488
  Copyright terms: Public domain W3C validator