| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1066 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → 𝑋 ∈ 𝐵) |
| 2 | | gsumconst.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
| 3 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 4 | | gsumconst.m |
. . . . . 6
⊢ · =
(.g‘𝐺) |
| 5 | 2, 3, 4 | mulg0 17546 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (0 · 𝑋) = (0g‘𝐺)) |
| 7 | | fveq2 6191 |
. . . . . . 7
⊢ (𝐴 = ∅ → (#‘𝐴) =
(#‘∅)) |
| 8 | 7 | adantl 482 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (#‘𝐴) =
(#‘∅)) |
| 9 | | hash0 13158 |
. . . . . 6
⊢
(#‘∅) = 0 |
| 10 | 8, 9 | syl6eq 2672 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (#‘𝐴) = 0) |
| 11 | 10 | oveq1d 6665 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → ((#‘𝐴) · 𝑋) = (0 · 𝑋)) |
| 12 | | mpteq1 4737 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ ∅ ↦ 𝑋)) |
| 13 | 12 | adantl 482 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ ∅ ↦ 𝑋)) |
| 14 | | mpt0 6021 |
. . . . . . 7
⊢ (𝑘 ∈ ∅ ↦ 𝑋) = ∅ |
| 15 | 13, 14 | syl6eq 2672 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝑘 ∈ 𝐴 ↦ 𝑋) = ∅) |
| 16 | 15 | oveq2d 6666 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = (𝐺 Σg
∅)) |
| 17 | 3 | gsum0 17278 |
. . . . 5
⊢ (𝐺 Σg
∅) = (0g‘𝐺) |
| 18 | 16, 17 | syl6eq 2672 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = (0g‘𝐺)) |
| 19 | 6, 11, 18 | 3eqtr4rd 2667 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ 𝐴 = ∅) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋)) |
| 20 | 19 | ex 450 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐴 = ∅ → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋))) |
| 21 | | simprl 794 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
ℕ) |
| 22 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 23 | 21, 22 | syl6eleq 2711 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (#‘𝐴) ∈
(ℤ≥‘1)) |
| 24 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → 𝑥 ∈ (1...(#‘𝐴))) |
| 25 | | simpl3 1066 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑋 ∈ 𝐵) |
| 26 | 25 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → 𝑋 ∈ 𝐵) |
| 27 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋) = (𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋) |
| 28 | 27 | fvmpt2 6291 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (1...(#‘𝐴)) ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋) |
| 29 | 24, 26, 28 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → ((𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋)‘𝑥) = 𝑋) |
| 30 | | f1of 6137 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(#‘𝐴))⟶𝐴) |
| 31 | 30 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))⟶𝐴) |
| 32 | 31 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (𝑓‘𝑥) ∈ 𝐴) |
| 33 | 31 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓 = (𝑥 ∈ (1...(#‘𝐴)) ↦ (𝑓‘𝑥))) |
| 34 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
| 35 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑥) → 𝑋 = 𝑋) |
| 36 | 32, 33, 34, 35 | fmptco 6396 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓) = (𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋)) |
| 37 | 36 | fveq1d 6193 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋)‘𝑥)) |
| 38 | 37 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓)‘𝑥) = ((𝑥 ∈ (1...(#‘𝐴)) ↦ 𝑋)‘𝑥)) |
| 39 | | elfznn 12370 |
. . . . . . . . 9
⊢ (𝑥 ∈ (1...(#‘𝐴)) → 𝑥 ∈ ℕ) |
| 40 | | fvconst2g 6467 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ ×
{𝑋})‘𝑥) = 𝑋) |
| 41 | 25, 39, 40 | syl2an 494 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
| 42 | 29, 38, 41 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑥 ∈ (1...(#‘𝐴))) → (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓)‘𝑥) = ((ℕ × {𝑋})‘𝑥)) |
| 43 | 23, 42 | seqfveq 12825 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) →
(seq1((+g‘𝐺), ((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓))‘(#‘𝐴)) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘(#‘𝐴))) |
| 44 | | eqid 2622 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 45 | | eqid 2622 |
. . . . . . 7
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 46 | | simpl1 1064 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝐺 ∈ Mnd) |
| 47 | | simpl2 1065 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝐴 ∈ Fin) |
| 48 | 25 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| 49 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋) |
| 50 | 48, 49 | fmptd 6385 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
| 51 | | eqidd 2623 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑋(+g‘𝐺)𝑋) = (𝑋(+g‘𝐺)𝑋)) |
| 52 | 2, 44, 45 | elcntzsn 17758 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋(+g‘𝐺)𝑋) = (𝑋(+g‘𝐺)𝑋)))) |
| 53 | 25, 52 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑋 ∈ ((Cntz‘𝐺)‘{𝑋}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋(+g‘𝐺)𝑋) = (𝑋(+g‘𝐺)𝑋)))) |
| 54 | 25, 51, 53 | mpbir2and 957 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑋 ∈ ((Cntz‘𝐺)‘{𝑋})) |
| 55 | 54 | snssd 4340 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → {𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋})) |
| 56 | | snidg 4206 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ {𝑋}) |
| 57 | 25, 56 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑋 ∈ {𝑋}) |
| 58 | 57 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ {𝑋}) |
| 59 | 58, 49 | fmptd 6385 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶{𝑋}) |
| 60 | | frn 6053 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶{𝑋} → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ {𝑋}) |
| 61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ {𝑋}) |
| 62 | 45 | cntzidss 17770 |
. . . . . . . 8
⊢ (({𝑋} ⊆ ((Cntz‘𝐺)‘{𝑋}) ∧ ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ {𝑋}) → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐴 ↦ 𝑋))) |
| 63 | 55, 61, 62 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ran (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ ((Cntz‘𝐺)‘ran (𝑘 ∈ 𝐴 ↦ 𝑋))) |
| 64 | | f1of1 6136 |
. . . . . . . 8
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(#‘𝐴))–1-1→𝐴) |
| 65 | 64 | ad2antll 765 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → 𝑓:(1...(#‘𝐴))–1-1→𝐴) |
| 66 | | suppssdm 7308 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝐴 ↦ 𝑋) supp (0g‘𝐺)) ⊆ dom (𝑘 ∈ 𝐴 ↦ 𝑋) |
| 67 | 49 | dmmptss 5631 |
. . . . . . . . . 10
⊢ dom
(𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ 𝐴 |
| 68 | 67 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → dom (𝑘 ∈ 𝐴 ↦ 𝑋) ⊆ 𝐴) |
| 69 | 66, 68 | syl5ss 3614 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝑋) supp (0g‘𝐺)) ⊆ 𝐴) |
| 70 | | f1ofo 6144 |
. . . . . . . . . 10
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝑓:(1...(#‘𝐴))–onto→𝐴) |
| 71 | | forn 6118 |
. . . . . . . . . 10
⊢ (𝑓:(1...(#‘𝐴))–onto→𝐴 → ran 𝑓 = 𝐴) |
| 72 | 70, 71 | syl 17 |
. . . . . . . . 9
⊢ (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → ran 𝑓 = 𝐴) |
| 73 | 72 | ad2antll 765 |
. . . . . . . 8
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ran 𝑓 = 𝐴) |
| 74 | 69, 73 | sseqtr4d 3642 |
. . . . . . 7
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((𝑘 ∈ 𝐴 ↦ 𝑋) supp (0g‘𝐺)) ⊆ ran 𝑓) |
| 75 | | eqid 2622 |
. . . . . . 7
⊢ (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓) supp (0g‘𝐺)) = (((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓) supp (0g‘𝐺)) |
| 76 | 2, 3, 44, 45, 46, 47, 50, 63, 21, 65, 74, 75 | gsumval3 18308 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = (seq1((+g‘𝐺), ((𝑘 ∈ 𝐴 ↦ 𝑋) ∘ 𝑓))‘(#‘𝐴))) |
| 77 | | eqid 2622 |
. . . . . . . 8
⊢
seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) |
| 78 | 2, 44, 4, 77 | mulgnn 17547 |
. . . . . . 7
⊢
(((#‘𝐴) ∈
ℕ ∧ 𝑋 ∈
𝐵) → ((#‘𝐴) · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘(#‘𝐴))) |
| 79 | 21, 25, 78 | syl2anc 693 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → ((#‘𝐴) · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘(#‘𝐴))) |
| 80 | 43, 76, 79 | 3eqtr4d 2666 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ ((#‘𝐴) ∈ ℕ ∧ 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴)) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋)) |
| 81 | 80 | expr 643 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ (#‘𝐴) ∈ ℕ) → (𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋))) |
| 82 | 81 | exlimdv 1861 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) ∧ (#‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋))) |
| 83 | 82 | expimpd 629 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋))) |
| 84 | | fz1f1o 14441 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧
∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
| 85 | 84 | 3ad2ant2 1083 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐴 = ∅ ∨ ((#‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘𝐴))–1-1-onto→𝐴))) |
| 86 | 20, 83, 85 | mpjaod 396 |
1
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((#‘𝐴) · 𝑋)) |