MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgp0 Structured version   Visualization version   Unicode version

Theorem gsummgp0 18608
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
gsummgp0.g  |-  G  =  (mulGrp `  R )
gsummgp0.0  |-  .0.  =  ( 0g `  R )
gsummgp0.r  |-  ( ph  ->  R  e.  CRing )
gsummgp0.n  |-  ( ph  ->  N  e.  Fin )
gsummgp0.a  |-  ( (
ph  /\  n  e.  N )  ->  A  e.  ( Base `  R
) )
gsummgp0.e  |-  ( (
ph  /\  n  =  i )  ->  A  =  B )
gsummgp0.b  |-  ( ph  ->  E. i  e.  N  B  =  .0.  )
Assertion
Ref Expression
gsummgp0  |-  ( ph  ->  ( G  gsumg  ( n  e.  N  |->  A ) )  =  .0.  )
Distinct variable groups:    A, i    B, n    i, n, G   
i, N, n    R, n    ph, i, n    .0. , i, n
Allowed substitution hints:    A( n)    B( i)    R( i)

Proof of Theorem gsummgp0
StepHypRef Expression
1 gsummgp0.b . 2  |-  ( ph  ->  E. i  e.  N  B  =  .0.  )
2 difsnid 4341 . . . . . . 7  |-  ( i  e.  N  ->  (
( N  \  {
i } )  u. 
{ i } )  =  N )
32eqcomd 2628 . . . . . 6  |-  ( i  e.  N  ->  N  =  ( ( N 
\  { i } )  u.  { i } ) )
43ad2antrl 764 . . . . 5  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  N  =  ( ( N  \  { i } )  u.  { i } ) )
54mpteq1d 4738 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( n  e.  N  |->  A )  =  ( n  e.  ( ( N  \  { i } )  u.  {
i } )  |->  A ) )
65oveq2d 6666 . . 3  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( G  gsumg  ( n  e.  N  |->  A ) )  =  ( G  gsumg  ( n  e.  ( ( N  \  {
i } )  u. 
{ i } ) 
|->  A ) ) )
7 gsummgp0.g . . . . 5  |-  G  =  (mulGrp `  R )
8 eqid 2622 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
97, 8mgpbas 18495 . . . 4  |-  ( Base `  R )  =  (
Base `  G )
10 eqid 2622 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
117, 10mgpplusg 18493 . . . 4  |-  ( .r
`  R )  =  ( +g  `  G
)
12 gsummgp0.r . . . . . 6  |-  ( ph  ->  R  e.  CRing )
137crngmgp 18555 . . . . . 6  |-  ( R  e.  CRing  ->  G  e. CMnd )
1412, 13syl 17 . . . . 5  |-  ( ph  ->  G  e. CMnd )
1514adantr 481 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  G  e. CMnd )
16 gsummgp0.n . . . . . 6  |-  ( ph  ->  N  e.  Fin )
17 diffi 8192 . . . . . 6  |-  ( N  e.  Fin  ->  ( N  \  { i } )  e.  Fin )
1816, 17syl 17 . . . . 5  |-  ( ph  ->  ( N  \  {
i } )  e. 
Fin )
1918adantr 481 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( N  \  {
i } )  e. 
Fin )
20 simpl 473 . . . . 5  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  ph )
21 eldifi 3732 . . . . 5  |-  ( n  e.  ( N  \  { i } )  ->  n  e.  N
)
22 gsummgp0.a . . . . 5  |-  ( (
ph  /\  n  e.  N )  ->  A  e.  ( Base `  R
) )
2320, 21, 22syl2an 494 . . . 4  |-  ( ( ( ph  /\  (
i  e.  N  /\  B  =  .0.  )
)  /\  n  e.  ( N  \  { i } ) )  ->  A  e.  ( Base `  R ) )
24 simprl 794 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
i  e.  N )
25 neldifsnd 4322 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  -.  i  e.  ( N  \  { i } ) )
26 crngring 18558 . . . . . . . 8  |-  ( R  e.  CRing  ->  R  e.  Ring )
2712, 26syl 17 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
28 ringmnd 18556 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
29 gsummgp0.0 . . . . . . . 8  |-  .0.  =  ( 0g `  R )
308, 29mndidcl 17308 . . . . . . 7  |-  ( R  e.  Mnd  ->  .0.  e.  ( Base `  R
) )
3127, 28, 303syl 18 . . . . . 6  |-  ( ph  ->  .0.  e.  ( Base `  R ) )
3231adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  .0.  e.  ( Base `  R
) )
33 eleq1 2689 . . . . . 6  |-  ( B  =  .0.  ->  ( B  e.  ( Base `  R )  <->  .0.  e.  ( Base `  R )
) )
3433ad2antll 765 . . . . 5  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( B  e.  (
Base `  R )  <->  .0. 
e.  ( Base `  R
) ) )
3532, 34mpbird 247 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  B  e.  ( Base `  R ) )
36 gsummgp0.e . . . . 5  |-  ( (
ph  /\  n  =  i )  ->  A  =  B )
3736adantlr 751 . . . 4  |-  ( ( ( ph  /\  (
i  e.  N  /\  B  =  .0.  )
)  /\  n  =  i )  ->  A  =  B )
389, 11, 15, 19, 23, 24, 25, 35, 37gsumunsnd 18357 . . 3  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( G  gsumg  ( n  e.  ( ( N  \  {
i } )  u. 
{ i } ) 
|->  A ) )  =  ( ( G  gsumg  ( n  e.  ( N  \  { i } ) 
|->  A ) ) ( .r `  R ) B ) )
39 oveq2 6658 . . . . 5  |-  ( B  =  .0.  ->  (
( G  gsumg  ( n  e.  ( N  \  { i } )  |->  A ) ) ( .r `  R ) B )  =  ( ( G 
gsumg  ( n  e.  ( N  \  { i } )  |->  A ) ) ( .r `  R
)  .0.  ) )
4039ad2antll 765 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( ( G  gsumg  ( n  e.  ( N  \  { i } ) 
|->  A ) ) ( .r `  R ) B )  =  ( ( G  gsumg  ( n  e.  ( N  \  { i } )  |->  A ) ) ( .r `  R )  .0.  )
)
4127adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  ->  R  e.  Ring )
4221, 22sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( N  \  { i } ) )  ->  A  e.  ( Base `  R ) )
4342ralrimiva 2966 . . . . . . 7  |-  ( ph  ->  A. n  e.  ( N  \  { i } ) A  e.  ( Base `  R
) )
449, 14, 18, 43gsummptcl 18366 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( n  e.  ( N  \  { i } )  |->  A ) )  e.  ( Base `  R ) )
4544adantr 481 . . . . 5  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( G  gsumg  ( n  e.  ( N  \  { i } )  |->  A ) )  e.  ( Base `  R ) )
468, 10, 29ringrz 18588 . . . . 5  |-  ( ( R  e.  Ring  /\  ( G  gsumg  ( n  e.  ( N  \  { i } )  |->  A ) )  e.  ( Base `  R ) )  -> 
( ( G  gsumg  ( n  e.  ( N  \  { i } ) 
|->  A ) ) ( .r `  R )  .0.  )  =  .0.  )
4741, 45, 46syl2anc 693 . . . 4  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( ( G  gsumg  ( n  e.  ( N  \  { i } ) 
|->  A ) ) ( .r `  R )  .0.  )  =  .0.  )
4840, 47eqtrd 2656 . . 3  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( ( G  gsumg  ( n  e.  ( N  \  { i } ) 
|->  A ) ) ( .r `  R ) B )  =  .0.  )
496, 38, 483eqtrd 2660 . 2  |-  ( (
ph  /\  ( i  e.  N  /\  B  =  .0.  ) )  -> 
( G  gsumg  ( n  e.  N  |->  A ) )  =  .0.  )
501, 49rexlimddv 3035 1  |-  ( ph  ->  ( G  gsumg  ( n  e.  N  |->  A ) )  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    \ cdif 3571    u. cun 3572   {csn 4177    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   Fincfn 7955   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101   Mndcmnd 17294  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-mgp 18490  df-ring 18549  df-cring 18550
This theorem is referenced by:  smadiadetlem0  20467
  Copyright terms: Public domain W3C validator