MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumpt Structured version   Visualization version   GIF version

Theorem gsumpt 18361
Description: Sum of a family that is nonzero at at most one point. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumpt.b 𝐵 = (Base‘𝐺)
gsumpt.z 0 = (0g𝐺)
gsumpt.g (𝜑𝐺 ∈ Mnd)
gsumpt.a (𝜑𝐴𝑉)
gsumpt.x (𝜑𝑋𝐴)
gsumpt.f (𝜑𝐹:𝐴𝐵)
gsumpt.s (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
Assertion
Ref Expression
gsumpt (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))

Proof of Theorem gsumpt
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 gsumpt.f . . . 4 (𝜑𝐹:𝐴𝐵)
2 gsumpt.x . . . . 5 (𝜑𝑋𝐴)
32snssd 4340 . . . 4 (𝜑 → {𝑋} ⊆ 𝐴)
41, 3feqresmpt 6250 . . 3 (𝜑 → (𝐹 ↾ {𝑋}) = (𝑎 ∈ {𝑋} ↦ (𝐹𝑎)))
54oveq2d 6666 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))))
6 gsumpt.b . . 3 𝐵 = (Base‘𝐺)
7 gsumpt.z . . 3 0 = (0g𝐺)
8 eqid 2622 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
9 gsumpt.g . . 3 (𝜑𝐺 ∈ Mnd)
10 gsumpt.a . . 3 (𝜑𝐴𝑉)
111, 2ffvelrnd 6360 . . . . . . . 8 (𝜑 → (𝐹𝑋) ∈ 𝐵)
12 eqidd 2623 . . . . . . . 8 (𝜑 → ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))
13 eqid 2622 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
146, 13, 8elcntzsn 17758 . . . . . . . . 9 ((𝐹𝑋) ∈ 𝐵 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1511, 14syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}) ↔ ((𝐹𝑋) ∈ 𝐵 ∧ ((𝐹𝑋)(+g𝐺)(𝐹𝑋)) = ((𝐹𝑋)(+g𝐺)(𝐹𝑋)))))
1611, 12, 15mpbir2and 957 . . . . . . 7 (𝜑 → (𝐹𝑋) ∈ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
1716snssd 4340 . . . . . 6 (𝜑 → {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)}))
18 eqid 2622 . . . . . . 7 (mrCls‘(SubMnd‘𝐺)) = (mrCls‘(SubMnd‘𝐺))
19 eqid 2622 . . . . . . 7 (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) = (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
208, 18, 19cntzspan 18247 . . . . . 6 ((𝐺 ∈ Mnd ∧ {(𝐹𝑋)} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑋)})) → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
219, 17, 20syl2anc 693 . . . . 5 (𝜑 → (𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd)
226submacs 17365 . . . . . . . 8 (𝐺 ∈ Mnd → (SubMnd‘𝐺) ∈ (ACS‘𝐵))
23 acsmre 16313 . . . . . . . 8 ((SubMnd‘𝐺) ∈ (ACS‘𝐵) → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
249, 22, 233syl 18 . . . . . . 7 (𝜑 → (SubMnd‘𝐺) ∈ (Moore‘𝐵))
2511snssd 4340 . . . . . . 7 (𝜑 → {(𝐹𝑋)} ⊆ 𝐵)
2618mrccl 16271 . . . . . . 7 (((SubMnd‘𝐺) ∈ (Moore‘𝐵) ∧ {(𝐹𝑋)} ⊆ 𝐵) → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2724, 25, 26syl2anc 693 . . . . . 6 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺))
2819, 8submcmn2 18244 . . . . . 6 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
2927, 28syl 17 . . . . 5 (𝜑 → ((𝐺s ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∈ CMnd ↔ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))))
3021, 29mpbid 222 . . . 4 (𝜑 → ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
31 ffn 6045 . . . . . . 7 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
321, 31syl 17 . . . . . 6 (𝜑𝐹 Fn 𝐴)
33 simpr 477 . . . . . . . . . 10 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → 𝑎 = 𝑋)
3433fveq2d 6195 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) = (𝐹𝑋))
3524, 18, 25mrcssidd 16285 . . . . . . . . . . 11 (𝜑 → {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
36 fvex 6201 . . . . . . . . . . . 12 (𝐹𝑋) ∈ V
3736snss 4316 . . . . . . . . . . 11 ((𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ {(𝐹𝑋)} ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3835, 37sylibr 224 . . . . . . . . . 10 (𝜑 → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
3938ad2antrr 762 . . . . . . . . 9 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑋) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4034, 39eqeltrd 2701 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎 = 𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
41 eldifsn 4317 . . . . . . . . . . 11 (𝑎 ∈ (𝐴 ∖ {𝑋}) ↔ (𝑎𝐴𝑎𝑋))
42 gsumpt.s . . . . . . . . . . . 12 (𝜑 → (𝐹 supp 0 ) ⊆ {𝑋})
43 fvex 6201 . . . . . . . . . . . . . 14 (0g𝐺) ∈ V
447, 43eqeltri 2697 . . . . . . . . . . . . 13 0 ∈ V
4544a1i 11 . . . . . . . . . . . 12 (𝜑0 ∈ V)
461, 42, 10, 45suppssr 7326 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝐴 ∖ {𝑋})) → (𝐹𝑎) = 0 )
4741, 46sylan2br 493 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) = 0 )
487subm0cl 17352 . . . . . . . . . . . 12 (((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ∈ (SubMnd‘𝐺) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
4927, 48syl 17 . . . . . . . . . . 11 (𝜑0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5049adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → 0 ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5147, 50eqeltrd 2701 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝑎𝑋)) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5251anassrs 680 . . . . . . . 8 (((𝜑𝑎𝐴) ∧ 𝑎𝑋) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5340, 52pm2.61dane 2881 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5453ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
55 ffnfv 6388 . . . . . 6 (𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑎𝐴 (𝐹𝑎) ∈ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})))
5632, 54, 55sylanbrc 698 . . . . 5 (𝜑𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
57 frn 6053 . . . . 5 (𝐹:𝐴⟶((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
5856, 57syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}))
598cntzidss 17770 . . . 4 ((((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)}) ⊆ ((Cntz‘𝐺)‘((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) ∧ ran 𝐹 ⊆ ((mrCls‘(SubMnd‘𝐺))‘{(𝐹𝑋)})) → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
6030, 58, 59syl2anc 693 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
61 ffun 6048 . . . . 5 (𝐹:𝐴𝐵 → Fun 𝐹)
621, 61syl 17 . . . 4 (𝜑 → Fun 𝐹)
63 snfi 8038 . . . . 5 {𝑋} ∈ Fin
64 ssfi 8180 . . . . 5 (({𝑋} ∈ Fin ∧ (𝐹 supp 0 ) ⊆ {𝑋}) → (𝐹 supp 0 ) ∈ Fin)
6563, 42, 64sylancr 695 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
66 fex 6490 . . . . . 6 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
671, 10, 66syl2anc 693 . . . . 5 (𝜑𝐹 ∈ V)
68 isfsupp 8279 . . . . 5 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
6967, 45, 68syl2anc 693 . . . 4 (𝜑 → (𝐹 finSupp 0 ↔ (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin)))
7062, 65, 69mpbir2and 957 . . 3 (𝜑𝐹 finSupp 0 )
716, 7, 8, 9, 10, 1, 60, 42, 70gsumzres 18310 . 2 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑋})) = (𝐺 Σg 𝐹))
72 fveq2 6191 . . . 4 (𝑎 = 𝑋 → (𝐹𝑎) = (𝐹𝑋))
736, 72gsumsn 18354 . . 3 ((𝐺 ∈ Mnd ∧ 𝑋𝐴 ∧ (𝐹𝑋) ∈ 𝐵) → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
749, 2, 11, 73syl3anc 1326 . 2 (𝜑 → (𝐺 Σg (𝑎 ∈ {𝑋} ↦ (𝐹𝑎))) = (𝐹𝑋))
755, 71, 743eqtr3d 2664 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  wss 3574  {csn 4177   class class class wbr 4653  cmpt 4729  ran crn 5115  cres 5116  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650   supp csupp 7295  Fincfn 7955   finSupp cfsupp 8275  Basecbs 15857  s cress 15858  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Moorecmre 16242  mrClscmrc 16243  ACScacs 16245  Mndcmnd 17294  SubMndcsubmnd 17334  Cntzccntz 17748  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195
This theorem is referenced by:  gsummpt1n0  18364  dprdfid  18416  evlslem3  19514  evlslem1  19515  coe1tmmul2  19646  coe1tmmul  19647  uvcresum  20132  frlmup2  20138  mamulid  20247  mamurid  20248  coe1mul3  23859  tayl0  24116  jensen  24715  linc1  42214
  Copyright terms: Public domain W3C validator