MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1tmmul2 Structured version   Visualization version   GIF version

Theorem coe1tmmul2 19646
Description: Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
coe1tm.z 0 = (0g𝑅)
coe1tm.k 𝐾 = (Base‘𝑅)
coe1tm.p 𝑃 = (Poly1𝑅)
coe1tm.x 𝑋 = (var1𝑅)
coe1tm.m · = ( ·𝑠𝑃)
coe1tm.n 𝑁 = (mulGrp‘𝑃)
coe1tm.e = (.g𝑁)
coe1tmmul.b 𝐵 = (Base‘𝑃)
coe1tmmul.t = (.r𝑃)
coe1tmmul.u × = (.r𝑅)
coe1tmmul.a (𝜑𝐴𝐵)
coe1tmmul.r (𝜑𝑅 ∈ Ring)
coe1tmmul.c (𝜑𝐶𝐾)
coe1tmmul.d (𝜑𝐷 ∈ ℕ0)
Assertion
Ref Expression
coe1tmmul2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Distinct variable groups:   𝑥, 0   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,   𝑥,𝐴   𝑥,𝑁   𝑥,𝑃   𝑥,𝑋   𝜑,𝑥   𝑥,𝑅   𝑥, ·   𝑥, ×   𝑥,
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem coe1tmmul2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 coe1tmmul.r . . 3 (𝜑𝑅 ∈ Ring)
2 coe1tmmul.a . . 3 (𝜑𝐴𝐵)
3 coe1tmmul.c . . . 4 (𝜑𝐶𝐾)
4 coe1tmmul.d . . . 4 (𝜑𝐷 ∈ ℕ0)
5 coe1tm.k . . . . 5 𝐾 = (Base‘𝑅)
6 coe1tm.p . . . . 5 𝑃 = (Poly1𝑅)
7 coe1tm.x . . . . 5 𝑋 = (var1𝑅)
8 coe1tm.m . . . . 5 · = ( ·𝑠𝑃)
9 coe1tm.n . . . . 5 𝑁 = (mulGrp‘𝑃)
10 coe1tm.e . . . . 5 = (.g𝑁)
11 coe1tmmul.b . . . . 5 𝐵 = (Base‘𝑃)
125, 6, 7, 8, 9, 10, 11ply1tmcl 19642 . . . 4 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
131, 3, 4, 12syl3anc 1326 . . 3 (𝜑 → (𝐶 · (𝐷 𝑋)) ∈ 𝐵)
14 coe1tmmul.t . . . 4 = (.r𝑃)
15 coe1tmmul.u . . . 4 × = (.r𝑅)
166, 14, 15, 11coe1mul 19640 . . 3 ((𝑅 ∈ Ring ∧ 𝐴𝐵 ∧ (𝐶 · (𝐷 𝑋)) ∈ 𝐵) → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
171, 2, 13, 16syl3anc 1326 . 2 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))))
18 eqeq2 2633 . . . 4 ((((coe1𝐴)‘(𝑥𝐷)) × 𝐶) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶) ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
19 eqeq2 2633 . . . 4 ( 0 = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ) → ((𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 ↔ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
20 coe1tm.z . . . . . . 7 0 = (0g𝑅)
211adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Ring)
22 ringmnd 18556 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
2321, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑅 ∈ Mnd)
24 ovex 6678 . . . . . . . 8 (0...𝑥) ∈ V
2524a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0...𝑥) ∈ V)
26 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷𝑥)
274adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℕ0)
28 simprl 794 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℕ0)
29 nn0sub 11343 . . . . . . . . . 10 ((𝐷 ∈ ℕ0𝑥 ∈ ℕ0) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3027, 28, 29syl2anc 693 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝐷𝑥 ↔ (𝑥𝐷) ∈ ℕ0))
3126, 30mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ ℕ0)
3227nn0ge0d 11354 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 0 ≤ 𝐷)
33 nn0re 11301 . . . . . . . . . . 11 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
3433ad2antrl 764 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℝ)
354nn0red 11352 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
3635adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℝ)
3734, 36subge02d 10619 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (0 ≤ 𝐷 ↔ (𝑥𝐷) ≤ 𝑥))
3832, 37mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ≤ 𝑥)
39 fznn0 12432 . . . . . . . . 9 (𝑥 ∈ ℕ0 → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4039ad2antrl 764 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑥𝐷) ∈ (0...𝑥) ↔ ((𝑥𝐷) ∈ ℕ0 ∧ (𝑥𝐷) ≤ 𝑥)))
4131, 38, 40mpbir2and 957 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥𝐷) ∈ (0...𝑥))
421ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑅 ∈ Ring)
43 eqid 2622 . . . . . . . . . . . . 13 (coe1𝐴) = (coe1𝐴)
4443, 11, 6, 5coe1f 19581 . . . . . . . . . . . 12 (𝐴𝐵 → (coe1𝐴):ℕ0𝐾)
452, 44syl 17 . . . . . . . . . . 11 (𝜑 → (coe1𝐴):ℕ0𝐾)
4645ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1𝐴):ℕ0𝐾)
47 elfznn0 12433 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℕ0)
4847adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℕ0)
4946, 48ffvelrnd 6360 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
50 eqid 2622 . . . . . . . . . . . . 13 (coe1‘(𝐶 · (𝐷 𝑋))) = (coe1‘(𝐶 · (𝐷 𝑋)))
5150, 11, 6, 5coe1f 19581 . . . . . . . . . . . 12 ((𝐶 · (𝐷 𝑋)) ∈ 𝐵 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5213, 51syl 17 . . . . . . . . . . 11 (𝜑 → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
5352ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (coe1‘(𝐶 · (𝐷 𝑋))):ℕ0𝐾)
54 fznn0sub 12373 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℕ0)
5554adantl 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥𝑦) ∈ ℕ0)
5653, 55ffvelrnd 6360 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾)
575, 15ringcl 18561 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾 ∧ ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
5842, 49, 56, 57syl3anc 1326 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) ∈ 𝐾)
59 eqid 2622 . . . . . . . 8 (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))
6058, 59fmptd 6385 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))):(0...𝑥)⟶𝐾)
611ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝑅 ∈ Ring)
623ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐶𝐾)
634ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ∈ ℕ0)
64 eldifi 3732 . . . . . . . . . . . . 13 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → 𝑦 ∈ (0...𝑥))
6564, 54syl 17 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) → (𝑥𝑦) ∈ ℕ0)
6665adantl 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (𝑥𝑦) ∈ ℕ0)
67 eldifsn 4317 . . . . . . . . . . . 12 (𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)}) ↔ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷)))
68 simplrl 800 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℕ0)
6968nn0cnd 11353 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑥 ∈ ℂ)
7047nn0cnd 11353 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℂ)
7170adantl 482 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 ∈ ℂ)
7269, 71nncand 10397 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑥 − (𝑥𝑦)) = 𝑦)
7372eqcomd 2628 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → 𝑦 = (𝑥 − (𝑥𝑦)))
74 oveq2 6658 . . . . . . . . . . . . . . . 16 (𝐷 = (𝑥𝑦) → (𝑥𝐷) = (𝑥 − (𝑥𝑦)))
7574eqeq2d 2632 . . . . . . . . . . . . . . 15 (𝐷 = (𝑥𝑦) → (𝑦 = (𝑥𝐷) ↔ 𝑦 = (𝑥 − (𝑥𝑦))))
7673, 75syl5ibrcom 237 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝐷 = (𝑥𝑦) → 𝑦 = (𝑥𝐷)))
7776necon3d 2815 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (𝑦 ≠ (𝑥𝐷) → 𝐷 ≠ (𝑥𝑦)))
7877impr 649 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ (𝑦 ∈ (0...𝑥) ∧ 𝑦 ≠ (𝑥𝐷))) → 𝐷 ≠ (𝑥𝑦))
7967, 78sylan2b 492 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → 𝐷 ≠ (𝑥𝑦))
8020, 5, 6, 7, 8, 9, 10, 61, 62, 63, 66, 79coe1tmfv2 19645 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
8180oveq2d 6666 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
825, 15, 20ringrz 18588 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((coe1𝐴)‘𝑦) ∈ 𝐾) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8342, 49, 82syl2anc 693 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8464, 83sylan2 491 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
8581, 84eqtrd 2656 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) ∧ 𝑦 ∈ ((0...𝑥) ∖ {(𝑥𝐷)})) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
8685, 25suppss2 7329 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) supp 0 ) ⊆ {(𝑥𝐷)})
875, 20, 23, 25, 41, 60, 86gsumpt 18361 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)))
88 fveq2 6191 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1𝐴)‘𝑦) = ((coe1𝐴)‘(𝑥𝐷)))
89 oveq2 6658 . . . . . . . . . 10 (𝑦 = (𝑥𝐷) → (𝑥𝑦) = (𝑥 − (𝑥𝐷)))
9089fveq2d 6195 . . . . . . . . 9 (𝑦 = (𝑥𝐷) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))))
9188, 90oveq12d 6668 . . . . . . . 8 (𝑦 = (𝑥𝐷) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
92 ovex 6678 . . . . . . . 8 (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) ∈ V
9391, 59, 92fvmpt 6282 . . . . . . 7 ((𝑥𝐷) ∈ (0...𝑥) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9441, 93syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))‘(𝑥𝐷)) = (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))))
9528nn0cnd 11353 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝑥 ∈ ℂ)
9627nn0cnd 11353 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐷 ∈ ℂ)
9795, 96nncand 10397 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑥 − (𝑥𝐷)) = 𝐷)
9897fveq2d 6195 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷))
993adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → 𝐶𝐾)
10020, 5, 6, 7, 8, 9, 10coe1tmfv1 19644 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐶𝐾𝐷 ∈ ℕ0) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10121, 99, 27, 100syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘𝐷) = 𝐶)
10298, 101eqtrd 2656 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷))) = 𝐶)
103102oveq2d 6666 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (((coe1𝐴)‘(𝑥𝐷)) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥 − (𝑥𝐷)))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
10487, 94, 1033eqtrd 2660 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℕ0𝐷𝑥)) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
105104anassrs 680 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (((coe1𝐴)‘(𝑥𝐷)) × 𝐶))
1061ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑅 ∈ Ring)
1073ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐶𝐾)
1084ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℕ0)
10954ad2antll 765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℕ0)
11054nn0red 11352 . . . . . . . . . . . . 13 (𝑦 ∈ (0...𝑥) → (𝑥𝑦) ∈ ℝ)
111110ad2antll 765 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ∈ ℝ)
11233ad2antlr 763 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 ∈ ℝ)
11335ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ∈ ℝ)
11447ad2antll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℕ0)
115114nn0ge0d 11354 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 0 ≤ 𝑦)
11647nn0red 11352 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝑥) → 𝑦 ∈ ℝ)
117116ad2antll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑦 ∈ ℝ)
118112, 117subge02d 10619 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (0 ≤ 𝑦 ↔ (𝑥𝑦) ≤ 𝑥))
119115, 118mpbid 222 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) ≤ 𝑥)
120 simprl 794 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ¬ 𝐷𝑥)
121112, 113ltnled 10184 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥 < 𝐷 ↔ ¬ 𝐷𝑥))
122120, 121mpbird 247 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝑥 < 𝐷)
123111, 112, 113, 119, 122lelttrd 10195 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (𝑥𝑦) < 𝐷)
124111, 123gtned 10172 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → 𝐷 ≠ (𝑥𝑦))
12520, 5, 6, 7, 8, 9, 10, 106, 107, 108, 109, 124coe1tmfv2 19645 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)) = 0 )
126125oveq2d 6666 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = (((coe1𝐴)‘𝑦) × 0 ))
12745ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (coe1𝐴):ℕ0𝐾)
128127, 114ffvelrnd 6360 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → ((coe1𝐴)‘𝑦) ∈ 𝐾)
129106, 128, 82syl2anc 693 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × 0 ) = 0 )
130126, 129eqtrd 2656 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ0) ∧ (¬ 𝐷𝑥𝑦 ∈ (0...𝑥))) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
131130anassrs 680 . . . . . . 7 ((((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) ∧ 𝑦 ∈ (0...𝑥)) → (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))) = 0 )
132131mpteq2dva 4744 . . . . . 6 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))) = (𝑦 ∈ (0...𝑥) ↦ 0 ))
133132oveq2d 6666 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )))
1341, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
13520gsumz 17374 . . . . . . 7 ((𝑅 ∈ Mnd ∧ (0...𝑥) ∈ V) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
136134, 24, 135sylancl 694 . . . . . 6 (𝜑 → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
137136ad2antrr 762 . . . . 5 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ 0 )) = 0 )
138133, 137eqtrd 2656 . . . 4 (((𝜑𝑥 ∈ ℕ0) ∧ ¬ 𝐷𝑥) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = 0 )
13918, 19, 105, 138ifbothda 4123 . . 3 ((𝜑𝑥 ∈ ℕ0) → (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦))))) = if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 ))
140139mpteq2dva 4744 . 2 (𝜑 → (𝑥 ∈ ℕ0 ↦ (𝑅 Σg (𝑦 ∈ (0...𝑥) ↦ (((coe1𝐴)‘𝑦) × ((coe1‘(𝐶 · (𝐷 𝑋)))‘(𝑥𝑦)))))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
14117, 140eqtrd 2656 1 (𝜑 → (coe1‘(𝐴 (𝐶 · (𝐷 𝑋)))) = (𝑥 ∈ ℕ0 ↦ if(𝐷𝑥, (((coe1𝐴)‘(𝑥𝐷)) × 𝐶), 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  ifcif 4086  {csn 4177   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   < clt 10074  cle 10075  cmin 10266  0cn0 11292  ...cfz 12326  Basecbs 15857  .rcmulr 15942   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  .gcmg 17540  mulGrpcmgp 18489  Ringcrg 18547  var1cv1 19546  Poly1cpl1 19547  coe1cco1 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-ple 15961  df-0g 16102  df-gsum 16103  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-psr 19356  df-mvr 19357  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-vr1 19551  df-ply1 19552  df-coe1 19553
This theorem is referenced by:  coe1tmmul2fv  19648  coe1sclmul2  19654
  Copyright terms: Public domain W3C validator