| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑠𝜑 |
| 2 | | nfre1 3005 |
. . . . 5
⊢
Ⅎ𝑠∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠) |
| 3 | 1, 2 | nfan 1828 |
. . . 4
⊢
Ⅎ𝑠(𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 4 | | hoidmvlelem5.l |
. . . 4
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 5 | | hoidmvlelem5.w |
. . . . . 6
⊢ 𝑊 = (𝑌 ∪ {𝑍}) |
| 6 | | hoidmvlelem5.f |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 7 | | hoidmvlelem5.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 8 | | ssfi 8180 |
. . . . . . . 8
⊢ ((𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → 𝑌 ∈ Fin) |
| 9 | 6, 7, 8 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ Fin) |
| 10 | | snfi 8038 |
. . . . . . . 8
⊢ {𝑍} ∈ Fin |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 12 | | unfi 8227 |
. . . . . . 7
⊢ ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 13 | 9, 11, 12 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin) |
| 14 | 5, 13 | syl5eqel 2705 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ Fin) |
| 15 | 14 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 𝑊 ∈ Fin) |
| 16 | | hoidmvlelem5.a |
. . . . 5
⊢ (𝜑 → 𝐴:𝑊⟶ℝ) |
| 17 | 16 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 𝐴:𝑊⟶ℝ) |
| 18 | | hoidmvlelem5.b |
. . . . 5
⊢ (𝜑 → 𝐵:𝑊⟶ℝ) |
| 19 | 18 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 𝐵:𝑊⟶ℝ) |
| 20 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 21 | 3, 4, 15, 17, 19, 20 | hoidmvval0 40801 |
. . 3
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (𝐴(𝐿‘𝑊)𝐵) = 0) |
| 22 | | nnex 11026 |
. . . . . 6
⊢ ℕ
∈ V |
| 23 | 22 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
| 24 | | icossicc 12260 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 25 | 14 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑊 ∈ Fin) |
| 26 | | hoidmvlelem5.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑊)) |
| 27 | 26 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑊)) |
| 28 | | elmapi 7879 |
. . . . . . . . 9
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑊) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑊⟶ℝ) |
| 30 | | hoidmvlelem5.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑊)) |
| 31 | 30 | ffvelrnda 6359 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑊)) |
| 32 | | elmapi 7879 |
. . . . . . . . 9
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑊) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 33 | 31, 32 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑊⟶ℝ) |
| 34 | 4, 25, 29, 33 | hoidmvcl 40796 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 35 | 24, 34 | sseldi 3601 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 36 | | eqid 2622 |
. . . . . 6
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) |
| 37 | 35, 36 | fmptd 6385 |
. . . . 5
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
| 38 | 23, 37 | sge0ge0 40601 |
. . . 4
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 39 | 38 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 40 | 21, 39 | eqbrtrd 4675 |
. 2
⊢ ((𝜑 ∧ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 41 | | icossxr 12258 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℝ* |
| 42 | 4, 14, 16, 18 | hoidmvcl 40796 |
. . . . . . 7
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ (0[,)+∞)) |
| 43 | 41, 42 | sseldi 3601 |
. . . . . 6
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈
ℝ*) |
| 44 | 43 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ∈
ℝ*) |
| 45 | 23, 37 | sge0xrcl 40602 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 46 | 45 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 47 | | rge0ssre 12280 |
. . . . . . . . 9
⊢
(0[,)+∞) ⊆ ℝ |
| 48 | 47, 42 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ∈ ℝ) |
| 49 | | ltpnf 11954 |
. . . . . . . 8
⊢ ((𝐴(𝐿‘𝑊)𝐵) ∈ ℝ → (𝐴(𝐿‘𝑊)𝐵) < +∞) |
| 50 | 48, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) < +∞) |
| 51 | 50 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) < +∞) |
| 52 | | id 22 |
. . . . . . . 8
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) |
| 53 | 52 | eqcomd 2628 |
. . . . . . 7
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞ → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 54 | 53 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → +∞ =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 55 | 51, 54 | breqtrd 4679 |
. . . . 5
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) <
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 56 | 44, 46, 55 | xrltled 39486 |
. . . 4
⊢ ((𝜑 ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 57 | 56 | adantlr 751 |
. . 3
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 58 | | simpll 790 |
. . . 4
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → 𝜑) |
| 59 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 60 | 16 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑊) → (𝐴‘𝑠) ∈ ℝ) |
| 61 | 18 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑊) → (𝐵‘𝑠) ∈ ℝ) |
| 62 | 60, 61 | ltnled 10184 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑊) → ((𝐴‘𝑠) < (𝐵‘𝑠) ↔ ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 63 | 62 | ralbidva 2985 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ∀𝑠 ∈ 𝑊 ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 64 | | ralnex 2992 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝑊 ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) |
| 65 | 64 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑠 ∈ 𝑊 ¬ (𝐵‘𝑠) ≤ (𝐴‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 66 | 63, 65 | bitrd 268 |
. . . . . . 7
⊢ (𝜑 → (∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 67 | 66 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠))) |
| 68 | 59, 67 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) |
| 69 | 68 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) |
| 70 | | simpr 477 |
. . . . . 6
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) |
| 71 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → ℕ ∈
V) |
| 72 | 37 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))):ℕ⟶(0[,]+∞)) |
| 73 | 71, 72 | sge0repnf 40603 |
. . . . . 6
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞)) |
| 74 | 70, 73 | mpbird 247 |
. . . . 5
⊢ ((𝜑 ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 75 | 74 | adantlr 751 |
. . . 4
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 76 | | simpll 790 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠))) |
| 77 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐶‘𝑗) = (𝐶‘𝑖)) |
| 78 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑖 → (𝐷‘𝑗) = (𝐷‘𝑖)) |
| 79 | 77, 78 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)) = ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖))) |
| 80 | 79 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))) = (𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖))) |
| 81 | 80 | fveq2i 6194 |
. . . . . . . . . 10
⊢
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) =
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) |
| 82 | 81 | eleq1i 2692 |
. . . . . . . . 9
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ ↔
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 83 | 82 | biimpi 206 |
. . . . . . . 8
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 84 | 83 | ad2antlr 763 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) →
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) |
| 85 | | simpr 477 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
| 86 | 6 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑋 ∈ Fin) |
| 87 | 7 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑌 ⊆ 𝑋) |
| 88 | | hoidmvlelem5.n |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ≠ ∅) |
| 89 | 88 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑌 ≠ ∅) |
| 90 | | hoidmvlelem5.z |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 91 | 90 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑍 ∈ (𝑋 ∖ 𝑌)) |
| 92 | 16 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐴:𝑊⟶ℝ) |
| 93 | 18 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐵:𝑊⟶ℝ) |
| 94 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑘 → (𝐴‘𝑠) = (𝐴‘𝑘)) |
| 95 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑘 → (𝐵‘𝑠) = (𝐵‘𝑘)) |
| 96 | 94, 95 | breq12d 4666 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑘 → ((𝐴‘𝑠) < (𝐵‘𝑠) ↔ (𝐴‘𝑘) < (𝐵‘𝑘))) |
| 97 | 96 | cbvralv 3171 |
. . . . . . . . . . . 12
⊢
(∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ↔ ∀𝑘 ∈ 𝑊 (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 98 | 97 | biimpi 206 |
. . . . . . . . . . 11
⊢
(∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) → ∀𝑘 ∈ 𝑊 (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 99 | 98 | adantr 481 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ∧ 𝑘 ∈ 𝑊) → ∀𝑘 ∈ 𝑊 (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 100 | | simpr 477 |
. . . . . . . . . 10
⊢
((∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑊) |
| 101 | | rspa 2930 |
. . . . . . . . . 10
⊢
((∀𝑘 ∈
𝑊 (𝐴‘𝑘) < (𝐵‘𝑘) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 102 | 99, 100, 101 | syl2anc 693 |
. . . . . . . . 9
⊢
((∀𝑠 ∈
𝑊 (𝐴‘𝑠) < (𝐵‘𝑠) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 103 | 102 | ad5ant25 1306 |
. . . . . . . 8
⊢
(((((𝜑 ∧
∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ 𝑊) → (𝐴‘𝑘) < (𝐵‘𝑘)) |
| 104 | 26 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑊)) |
| 105 | 30 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑊)) |
| 106 | 82 | biimpri 218 |
. . . . . . . . 9
⊢
((Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 107 | 106 | ad2antlr 763 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 108 | | fveq1 6190 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → (𝑑‘𝑖) = (𝑐‘𝑖)) |
| 109 | 108 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑐 → ((𝑑‘𝑖) ≤ 𝑥 ↔ (𝑐‘𝑖) ≤ 𝑥)) |
| 110 | 109, 108 | ifbieq1d 4109 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑐 → if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥) = if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)) |
| 111 | 108, 110 | ifeq12d 4106 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑐 → if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)) = if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) |
| 112 | 111 | mpteq2dv 4745 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))) = (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)))) |
| 113 | | eleq1 2689 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝑌 ↔ 𝑗 ∈ 𝑌)) |
| 114 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝑐‘𝑖) = (𝑐‘𝑗)) |
| 115 | 114 | breq1d 4663 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑗 → ((𝑐‘𝑖) ≤ 𝑥 ↔ (𝑐‘𝑗) ≤ 𝑥)) |
| 116 | 115, 114 | ifbieq1d 4109 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥) = if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)) |
| 117 | 113, 114,
116 | ifbieq12d 4113 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥)) = if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) |
| 118 | 117 | cbvmptv 4750 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) = (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))) |
| 119 | 118 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝑐 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑐‘𝑖), if((𝑐‘𝑖) ≤ 𝑥, (𝑐‘𝑖), 𝑥))) = (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) |
| 120 | 112, 119 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑐 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))) = (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) |
| 121 | 120 | cbvmptv 4750 |
. . . . . . . . 9
⊢ (𝑑 ∈ (ℝ
↑𝑚 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))) = (𝑐 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥)))) |
| 122 | 121 | mpteq2i 4741 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ
↑𝑚 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑗 ∈ 𝑊 ↦ if(𝑗 ∈ 𝑌, (𝑐‘𝑗), if((𝑐‘𝑗) ≤ 𝑥, (𝑐‘𝑗), 𝑥))))) |
| 123 | | eqid 2622 |
. . . . . . . 8
⊢ ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) = ((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) |
| 124 | | simpr 477 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ+) |
| 125 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 → (𝑤 − (𝐴‘𝑍)) = (𝑧 − (𝐴‘𝑍))) |
| 126 | 125 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) = (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑧 − (𝐴‘𝑍)))) |
| 127 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → ((𝑑‘𝑖) ≤ 𝑤 ↔ (𝑑‘𝑖) ≤ 𝑥)) |
| 128 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → (𝑑‘𝑖) = (𝑑‘𝑖)) |
| 129 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) |
| 130 | 127, 128,
129 | ifbieq12d 4113 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 = 𝑥 → if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤) = if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)) |
| 131 | 130 | ifeq2d 4105 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 = 𝑥 → if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)) = if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))) |
| 132 | 131 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑥 → (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤))) = (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))) |
| 133 | 132 | mpteq2dv 4745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑥 → (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))) = (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))))) |
| 134 | 133 | cbvmptv 4750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ
↑𝑚 𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤))))) = (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥))))) |
| 135 | 134 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → (𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤))))) = (𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))) |
| 136 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑧 → 𝑤 = 𝑧) |
| 137 | 135, 136 | fveq12d 6197 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑧 → ((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤) = ((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)) |
| 138 | 137 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑧 → (((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)) = (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙))) |
| 139 | 138 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = 𝑧 → ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))) = ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)))) |
| 140 | 139 | mpteq2dv 4745 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))) = (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙))))) |
| 141 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑗 → (𝐶‘𝑙) = (𝐶‘𝑗)) |
| 142 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = 𝑗 → (𝐷‘𝑙) = (𝐷‘𝑗)) |
| 143 | 142 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑙 = 𝑗 → (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)) = (((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))) |
| 144 | 141, 143 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = 𝑗 → ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙))) = ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))) |
| 145 | 144 | cbvmptv 4750 |
. . . . . . . . . . . . . 14
⊢ (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))) |
| 146 | 145 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))) |
| 147 | 140, 146 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → (𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))) = (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))) |
| 148 | 147 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑧 →
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))))) |
| 149 | 148 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))))) = ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))))) |
| 150 | 126, 149 | breq12d 4666 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → ((((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙)))))) ↔ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗)))))))) |
| 151 | 150 | cbvrabv 3199 |
. . . . . . . 8
⊢ {𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))))} = {𝑧 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑧 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(((𝑥 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑥, (𝑑‘𝑖), 𝑥)))))‘𝑧)‘(𝐷‘𝑗))))))} |
| 152 | | eqid 2622 |
. . . . . . . 8
⊢
sup({𝑤 ∈
((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))))}, ℝ, < ) = sup({𝑤 ∈ ((𝐴‘𝑍)[,](𝐵‘𝑍)) ∣ (((𝐴 ↾ 𝑌)(𝐿‘𝑌)(𝐵 ↾ 𝑌)) · (𝑤 − (𝐴‘𝑍))) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑙 ∈ ℕ ↦ ((𝐶‘𝑙)(𝐿‘𝑊)(((𝑤 ∈ ℝ ↦ (𝑑 ∈ (ℝ ↑𝑚
𝑊) ↦ (𝑖 ∈ 𝑊 ↦ if(𝑖 ∈ 𝑌, (𝑑‘𝑖), if((𝑑‘𝑖) ≤ 𝑤, (𝑑‘𝑖), 𝑤)))))‘𝑤)‘(𝐷‘𝑙))))))}, ℝ, < ) |
| 153 | | hoidmvlelem5.i |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑒 ∈ (ℝ ↑𝑚
𝑌)∀𝑓 ∈ (ℝ
↑𝑚 𝑌)∀𝑔 ∈ ((ℝ ↑𝑚
𝑌)
↑𝑚 ℕ)∀ℎ ∈ ((ℝ ↑𝑚
𝑌)
↑𝑚 ℕ)(X𝑘 ∈ 𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 154 | 153 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) →
∀𝑒 ∈ (ℝ
↑𝑚 𝑌)∀𝑓 ∈ (ℝ ↑𝑚
𝑌)∀𝑔 ∈ ((ℝ
↑𝑚 𝑌) ↑𝑚
ℕ)∀ℎ ∈
((ℝ ↑𝑚 𝑌) ↑𝑚 ℕ)(X𝑘 ∈
𝑌 ((𝑒‘𝑘)[,)(𝑓‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑌 (((𝑔‘𝑗)‘𝑘)[,)((ℎ‘𝑗)‘𝑘)) → (𝑒(𝐿‘𝑌)𝑓) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝑔‘𝑗)(𝐿‘𝑌)(ℎ‘𝑗)))))) |
| 155 | | hoidmvlelem5.s |
. . . . . . . . 9
⊢ (𝜑 → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 156 | 155 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → X𝑘 ∈
𝑊 ((𝐴‘𝑘)[,)(𝐵‘𝑘)) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑊 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 157 | 4, 86, 87, 89, 91, 5, 92, 93, 103, 104, 105, 107, 122, 123, 124, 151, 152, 154, 156 | hoidmvlelem4 40812 |
. . . . . . 7
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑖 ∈ ℕ ↦ ((𝐶‘𝑖)(𝐿‘𝑊)(𝐷‘𝑖)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 158 | 76, 84, 85, 157 | syl21anc 1325 |
. . . . . 6
⊢ ((((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 159 | 158 | ralrimiva 2966 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → ∀𝑟 ∈ ℝ+
(𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))))) |
| 160 | | nfv 1843 |
. . . . . 6
⊢
Ⅎ𝑟((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) |
| 161 | 43 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → (𝐴(𝐿‘𝑊)𝐵) ∈
ℝ*) |
| 162 | | 0xr 10086 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
| 163 | 162 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → 0 ∈
ℝ*) |
| 164 | | pnfxr 10092 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 165 | 164 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → +∞ ∈
ℝ*) |
| 166 | 45 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈
ℝ*) |
| 167 | 38 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 168 | | ltpnf 11954 |
. . . . . . . 8
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 169 | 168 | adantl 482 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) < +∞) |
| 170 | 163, 165,
166, 167, 169 | elicod 12224 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ (0[,)+∞)) |
| 171 | 160, 161,
170 | xralrple2 39570 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → ((𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ↔ ∀𝑟 ∈ ℝ+ (𝐴(𝐿‘𝑊)𝐵) ≤ ((1 + 𝑟) ·
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))))) |
| 172 | 159, 171 | mpbird 247 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑠 ∈ 𝑊 (𝐴‘𝑠) < (𝐵‘𝑠)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) ∈ ℝ) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 173 | 58, 69, 75, 172 | syl21anc 1325 |
. . 3
⊢ (((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) ∧ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗)))) = +∞) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 174 | 57, 173 | pm2.61dan 832 |
. 2
⊢ ((𝜑 ∧ ¬ ∃𝑠 ∈ 𝑊 (𝐵‘𝑠) ≤ (𝐴‘𝑠)) → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |
| 175 | 40, 174 | pm2.61dan 832 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑊)𝐵) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑊)(𝐷‘𝑗))))) |