MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1obl Structured version   Visualization version   GIF version

Theorem imasf1obl 22293
Description: The image of a metric space ball. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1obl.r (𝜑𝑅𝑍)
imasf1obl.e 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
imasf1obl.d 𝐷 = (dist‘𝑈)
imasf1obl.m (𝜑𝐸 ∈ (∞Met‘𝑉))
imasf1obl.x (𝜑𝑃𝑉)
imasf1obl.s (𝜑𝑆 ∈ ℝ*)
Assertion
Ref Expression
imasf1obl (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))

Proof of Theorem imasf1obl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 imasf1obl.f . . . . . . . . . 10 (𝜑𝐹:𝑉1-1-onto𝐵)
2 f1ocnvfv2 6533 . . . . . . . . . 10 ((𝐹:𝑉1-1-onto𝐵𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
31, 2sylan 488 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = 𝑥)
43oveq2d 6666 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = ((𝐹𝑃)𝐷𝑥))
5 imasf1obl.u . . . . . . . . . 10 (𝜑𝑈 = (𝐹s 𝑅))
65adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑈 = (𝐹s 𝑅))
7 imasf1obl.v . . . . . . . . . 10 (𝜑𝑉 = (Base‘𝑅))
87adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑉 = (Base‘𝑅))
91adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐹:𝑉1-1-onto𝐵)
10 imasf1obl.r . . . . . . . . . 10 (𝜑𝑅𝑍)
1110adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑅𝑍)
12 imasf1obl.e . . . . . . . . 9 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
13 imasf1obl.d . . . . . . . . 9 𝐷 = (dist‘𝑈)
14 imasf1obl.m . . . . . . . . . 10 (𝜑𝐸 ∈ (∞Met‘𝑉))
1514adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐸 ∈ (∞Met‘𝑉))
16 imasf1obl.x . . . . . . . . . 10 (𝜑𝑃𝑉)
1716adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑃𝑉)
18 f1ocnv 6149 . . . . . . . . . . . 12 (𝐹:𝑉1-1-onto𝐵𝐹:𝐵1-1-onto𝑉)
191, 18syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐵1-1-onto𝑉)
20 f1of 6137 . . . . . . . . . . 11 (𝐹:𝐵1-1-onto𝑉𝐹:𝐵𝑉)
2119, 20syl 17 . . . . . . . . . 10 (𝜑𝐹:𝐵𝑉)
2221ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝐹𝑥) ∈ 𝑉)
236, 8, 9, 11, 12, 13, 15, 17, 22imasdsf1o 22179 . . . . . . . 8 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷(𝐹‘(𝐹𝑥))) = (𝑃𝐸(𝐹𝑥)))
244, 23eqtr3d 2658 . . . . . . 7 ((𝜑𝑥𝐵) → ((𝐹𝑃)𝐷𝑥) = (𝑃𝐸(𝐹𝑥)))
2524breq1d 4663 . . . . . 6 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
26 imasf1obl.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ*)
2726adantr 481 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑆 ∈ ℝ*)
28 elbl2 22195 . . . . . . 7 (((𝐸 ∈ (∞Met‘𝑉) ∧ 𝑆 ∈ ℝ*) ∧ (𝑃𝑉 ∧ (𝐹𝑥) ∈ 𝑉)) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
2915, 27, 17, 22, 28syl22anc 1327 . . . . . 6 ((𝜑𝑥𝐵) → ((𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆) ↔ (𝑃𝐸(𝐹𝑥)) < 𝑆))
3025, 29bitr4d 271 . . . . 5 ((𝜑𝑥𝐵) → (((𝐹𝑃)𝐷𝑥) < 𝑆 ↔ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆)))
3130pm5.32da 673 . . . 4 (𝜑 → ((𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
325, 7, 1, 10, 12, 13, 14imasf1oxmet 22180 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝐵))
33 f1of 6137 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉𝐵)
341, 33syl 17 . . . . . 6 (𝜑𝐹:𝑉𝐵)
3534, 16ffvelrnd 6360 . . . . 5 (𝜑 → (𝐹𝑃) ∈ 𝐵)
36 elbl 22193 . . . . 5 ((𝐷 ∈ (∞Met‘𝐵) ∧ (𝐹𝑃) ∈ 𝐵𝑆 ∈ ℝ*) → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
3732, 35, 26, 36syl3anc 1326 . . . 4 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ (𝑥𝐵 ∧ ((𝐹𝑃)𝐷𝑥) < 𝑆)))
38 f1ofn 6138 . . . . 5 (𝐹:𝐵1-1-onto𝑉𝐹 Fn 𝐵)
39 elpreima 6337 . . . . 5 (𝐹 Fn 𝐵 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4019, 38, 393syl 18 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆)) ↔ (𝑥𝐵 ∧ (𝐹𝑥) ∈ (𝑃(ball‘𝐸)𝑆))))
4131, 37, 403bitr4d 300 . . 3 (𝜑 → (𝑥 ∈ ((𝐹𝑃)(ball‘𝐷)𝑆) ↔ 𝑥 ∈ (𝐹 “ (𝑃(ball‘𝐸)𝑆))))
4241eqrdv 2620 . 2 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
43 imacnvcnv 5599 . 2 (𝐹 “ (𝑃(ball‘𝐸)𝑆)) = (𝐹 “ (𝑃(ball‘𝐸)𝑆))
4442, 43syl6eq 2672 1 (𝜑 → ((𝐹𝑃)(ball‘𝐷)𝑆) = (𝐹 “ (𝑃(ball‘𝐸)𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653   × cxp 5112  ccnv 5113  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  *cxr 10073   < clt 10074  Basecbs 15857  distcds 15950  s cimas 16164  ∞Metcxmt 19731  ballcbl 19733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-0g 16102  df-gsum 16103  df-xrs 16162  df-imas 16168  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-bl 19741
This theorem is referenced by:  imasf1oxms  22294
  Copyright terms: Public domain W3C validator