MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem1 Structured version   Visualization version   GIF version

Theorem ipcnlem1 23044
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
ipcnlem1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝐷,𝑟   𝑥,𝑦,𝜑   𝑥,𝑟,𝑦,𝑇   𝑈,𝑟,𝑥,𝑦   , ,𝑟   𝑅,𝑟   𝑉,𝑟,𝑦
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   , (𝑥,𝑦)   𝑁(𝑥,𝑦,𝑟)   𝑉(𝑥)   𝑊(𝑥,𝑦,𝑟)

Proof of Theorem ipcnlem1
StepHypRef Expression
1 ipcn.t . . . 4 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
2 ipcn.r . . . . . 6 (𝜑𝑅 ∈ ℝ+)
32rphalfcld 11884 . . . . 5 (𝜑 → (𝑅 / 2) ∈ ℝ+)
4 ipcn.w . . . . . . . . 9 (𝜑𝑊 ∈ ℂPreHil)
5 cphnlm 22972 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
64, 5syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
7 nlmngp 22481 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
86, 7syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
9 ipcn.a . . . . . . 7 (𝜑𝐴𝑉)
10 ipcn.v . . . . . . . 8 𝑉 = (Base‘𝑊)
11 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
1210, 11nmcl 22420 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
138, 9, 12syl2anc 693 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
1410, 11nmge0 22421 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
158, 9, 14syl2anc 693 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
1613, 15ge0p1rpd 11902 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
173, 16rpdivcld 11889 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
181, 17syl5eqel 2705 . . 3 (𝜑𝑇 ∈ ℝ+)
19 ipcn.u . . . 4 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
20 ipcn.b . . . . . . . 8 (𝜑𝐵𝑉)
2110, 11nmcl 22420 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
228, 20, 21syl2anc 693 . . . . . . 7 (𝜑 → (𝑁𝐵) ∈ ℝ)
2318rpred 11872 . . . . . . 7 (𝜑𝑇 ∈ ℝ)
2422, 23readdcld 10069 . . . . . 6 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
25 0red 10041 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
2610, 11nmge0 22421 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
278, 20, 26syl2anc 693 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝐵))
2822, 18ltaddrpd 11905 . . . . . . 7 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
2925, 22, 24, 27, 28lelttrd 10195 . . . . . 6 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
3024, 29elrpd 11869 . . . . 5 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ+)
313, 30rpdivcld 11889 . . . 4 (𝜑 → ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)) ∈ ℝ+)
3219, 31syl5eqel 2705 . . 3 (𝜑𝑈 ∈ ℝ+)
3318, 32ifcld 4131 . 2 (𝜑 → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
34 ipcn.h . . . . 5 , = (·𝑖𝑊)
35 ipcn.d . . . . 5 𝐷 = (dist‘𝑊)
364adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ ℂPreHil)
379adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐴𝑉)
3820adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝐵𝑉)
392adantr 481 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑅 ∈ ℝ+)
40 simprll 802 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑥𝑉)
41 simprlr 803 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑦𝑉)
428adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ NrmGrp)
43 ngpms 22404 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
4442, 43syl 17 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
4510, 35mscl 22266 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑥𝑉) → (𝐴𝐷𝑥) ∈ ℝ)
4644, 37, 40, 45syl3anc 1326 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) ∈ ℝ)
4733adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+)
4847rpred 11872 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ)
4932rpred 11872 . . . . . . 7 (𝜑𝑈 ∈ ℝ)
5049adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑈 ∈ ℝ)
51 simprrl 804 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈))
5223adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑇 ∈ ℝ)
53 min2 12021 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5452, 50, 53syl2anc 693 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑈)
5546, 48, 50, 51, 54ltletrd 10197 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐴𝐷𝑥) < 𝑈)
568, 43syl 17 . . . . . . . 8 (𝜑𝑊 ∈ MetSp)
5756adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → 𝑊 ∈ MetSp)
5810, 35mscl 22266 . . . . . . 7 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑦𝑉) → (𝐵𝐷𝑦) ∈ ℝ)
5957, 38, 41, 58syl3anc 1326 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) ∈ ℝ)
60 simprrr 805 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))
61 min1 12020 . . . . . . 7 ((𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6252, 50, 61syl2anc 693 . . . . . 6 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → if(𝑇𝑈, 𝑇, 𝑈) ≤ 𝑇)
6359, 48, 52, 60, 62ltletrd 10197 . . . . 5 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (𝐵𝐷𝑦) < 𝑇)
6410, 34, 35, 11, 1, 19, 36, 37, 38, 39, 40, 41, 55, 63ipcnlem2 23043 . . . 4 ((𝜑 ∧ ((𝑥𝑉𝑦𝑉) ∧ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)
6564expr 643 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
6665ralrimivva 2971 . 2 (𝜑 → ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
67 breq2 4657 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐴𝐷𝑥) < 𝑟 ↔ (𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈)))
68 breq2 4657 . . . . . 6 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((𝐵𝐷𝑦) < 𝑟 ↔ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)))
6967, 68anbi12d 747 . . . . 5 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) ↔ ((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈))))
7069imbi1d 331 . . . 4 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → ((((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
71702ralbidv 2989 . . 3 (𝑟 = if(𝑇𝑈, 𝑇, 𝑈) → (∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅) ↔ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)))
7271rspcev 3309 . 2 ((if(𝑇𝑈, 𝑇, 𝑈) ∈ ℝ+ ∧ ∀𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < if(𝑇𝑈, 𝑇, 𝑈) ∧ (𝐵𝐷𝑦) < if(𝑇𝑈, 𝑇, 𝑈)) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅)) → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
7333, 66, 72syl2anc 693 1 (𝜑 → ∃𝑟 ∈ ℝ+𝑥𝑉𝑦𝑉 (((𝐴𝐷𝑥) < 𝑟 ∧ (𝐵𝐷𝑦) < 𝑟) → (abs‘((𝐴 , 𝐵) − (𝑥 , 𝑦))) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  +crp 11832  abscabs 13974  Basecbs 15857  ·𝑖cip 15946  distcds 15950  MetSpcmt 22123  normcnm 22381  NrmGrpcngp 22382  NrmModcnlm 22385  ℂPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-topgen 16104  df-xrs 16162  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-staf 18845  df-srng 18846  df-lmod 18865  df-lmhm 19022  df-lvec 19103  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-phl 19971  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-xms 22125  df-ms 22126  df-nm 22387  df-ngp 22388  df-tng 22389  df-nlm 22391  df-clm 22863  df-cph 22968  df-tch 22969
This theorem is referenced by:  ipcn  23045
  Copyright terms: Public domain W3C validator