| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgneg | Structured version Visualization version Unicode version | ||
| Description: Negation of an integral. (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| itgcnval.1 |
|
| itgcnval.2 |
|
| Ref | Expression |
|---|---|
| itgneg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcnval.2 |
. . . . . . . 8
| |
| 2 | iblmbf 23534 |
. . . . . . . 8
| |
| 3 | 1, 2 | syl 17 |
. . . . . . 7
|
| 4 | itgcnval.1 |
. . . . . . 7
| |
| 5 | 3, 4 | mbfmptcl 23404 |
. . . . . 6
|
| 6 | 5 | recld 13934 |
. . . . 5
|
| 7 | 5 | iblcn 23565 |
. . . . . . 7
|
| 8 | 1, 7 | mpbid 222 |
. . . . . 6
|
| 9 | 8 | simpld 475 |
. . . . 5
|
| 10 | 6, 9 | itgcl 23550 |
. . . 4
|
| 11 | ax-icn 9995 |
. . . . 5
| |
| 12 | 5 | imcld 13935 |
. . . . . 6
|
| 13 | 8 | simprd 479 |
. . . . . 6
|
| 14 | 12, 13 | itgcl 23550 |
. . . . 5
|
| 15 | mulcl 10020 |
. . . . 5
| |
| 16 | 11, 14, 15 | sylancr 695 |
. . . 4
|
| 17 | 10, 16 | negdid 10405 |
. . 3
|
| 18 | 0re 10040 |
. . . . . . . 8
| |
| 19 | ifcl 4130 |
. . . . . . . 8
| |
| 20 | 6, 18, 19 | sylancl 694 |
. . . . . . 7
|
| 21 | 6 | iblre 23560 |
. . . . . . . . 9
|
| 22 | 9, 21 | mpbid 222 |
. . . . . . . 8
|
| 23 | 22 | simpld 475 |
. . . . . . 7
|
| 24 | 20, 23 | itgcl 23550 |
. . . . . 6
|
| 25 | 6 | renegcld 10457 |
. . . . . . . 8
|
| 26 | ifcl 4130 |
. . . . . . . 8
| |
| 27 | 25, 18, 26 | sylancl 694 |
. . . . . . 7
|
| 28 | 22 | simprd 479 |
. . . . . . 7
|
| 29 | 27, 28 | itgcl 23550 |
. . . . . 6
|
| 30 | 24, 29 | negsubdi2d 10408 |
. . . . 5
|
| 31 | 6, 9 | itgreval 23563 |
. . . . . 6
|
| 32 | 31 | negeqd 10275 |
. . . . 5
|
| 33 | 5 | negcld 10379 |
. . . . . . . 8
|
| 34 | 33 | recld 13934 |
. . . . . . 7
|
| 35 | 4, 1 | iblneg 23569 |
. . . . . . . . 9
|
| 36 | 33 | iblcn 23565 |
. . . . . . . . 9
|
| 37 | 35, 36 | mpbid 222 |
. . . . . . . 8
|
| 38 | 37 | simpld 475 |
. . . . . . 7
|
| 39 | 34, 38 | itgreval 23563 |
. . . . . 6
|
| 40 | 5 | renegd 13949 |
. . . . . . . . . 10
|
| 41 | 40 | breq2d 4665 |
. . . . . . . . 9
|
| 42 | 41, 40 | ifbieq1d 4109 |
. . . . . . . 8
|
| 43 | 42 | itgeq2dv 23548 |
. . . . . . 7
|
| 44 | 40 | negeqd 10275 |
. . . . . . . . . . 11
|
| 45 | 6 | recnd 10068 |
. . . . . . . . . . . 12
|
| 46 | 45 | negnegd 10383 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | eqtrd 2656 |
. . . . . . . . . 10
|
| 48 | 47 | breq2d 4665 |
. . . . . . . . 9
|
| 49 | 48, 47 | ifbieq1d 4109 |
. . . . . . . 8
|
| 50 | 49 | itgeq2dv 23548 |
. . . . . . 7
|
| 51 | 43, 50 | oveq12d 6668 |
. . . . . 6
|
| 52 | 39, 51 | eqtrd 2656 |
. . . . 5
|
| 53 | 30, 32, 52 | 3eqtr4d 2666 |
. . . 4
|
| 54 | mulneg2 10467 |
. . . . . 6
| |
| 55 | 11, 14, 54 | sylancr 695 |
. . . . 5
|
| 56 | ifcl 4130 |
. . . . . . . . . . 11
| |
| 57 | 12, 18, 56 | sylancl 694 |
. . . . . . . . . 10
|
| 58 | 12 | iblre 23560 |
. . . . . . . . . . . 12
|
| 59 | 13, 58 | mpbid 222 |
. . . . . . . . . . 11
|
| 60 | 59 | simpld 475 |
. . . . . . . . . 10
|
| 61 | 57, 60 | itgcl 23550 |
. . . . . . . . 9
|
| 62 | 12 | renegcld 10457 |
. . . . . . . . . . 11
|
| 63 | ifcl 4130 |
. . . . . . . . . . 11
| |
| 64 | 62, 18, 63 | sylancl 694 |
. . . . . . . . . 10
|
| 65 | 59 | simprd 479 |
. . . . . . . . . 10
|
| 66 | 64, 65 | itgcl 23550 |
. . . . . . . . 9
|
| 67 | 61, 66 | negsubdi2d 10408 |
. . . . . . . 8
|
| 68 | 5 | imnegd 13950 |
. . . . . . . . . . . 12
|
| 69 | 68 | breq2d 4665 |
. . . . . . . . . . 11
|
| 70 | 69, 68 | ifbieq1d 4109 |
. . . . . . . . . 10
|
| 71 | 70 | itgeq2dv 23548 |
. . . . . . . . 9
|
| 72 | 68 | negeqd 10275 |
. . . . . . . . . . . . 13
|
| 73 | 12 | recnd 10068 |
. . . . . . . . . . . . . 14
|
| 74 | 73 | negnegd 10383 |
. . . . . . . . . . . . 13
|
| 75 | 72, 74 | eqtrd 2656 |
. . . . . . . . . . . 12
|
| 76 | 75 | breq2d 4665 |
. . . . . . . . . . 11
|
| 77 | 76, 75 | ifbieq1d 4109 |
. . . . . . . . . 10
|
| 78 | 77 | itgeq2dv 23548 |
. . . . . . . . 9
|
| 79 | 71, 78 | oveq12d 6668 |
. . . . . . . 8
|
| 80 | 67, 79 | eqtr4d 2659 |
. . . . . . 7
|
| 81 | 12, 13 | itgreval 23563 |
. . . . . . . 8
|
| 82 | 81 | negeqd 10275 |
. . . . . . 7
|
| 83 | 33 | imcld 13935 |
. . . . . . . 8
|
| 84 | 37 | simprd 479 |
. . . . . . . 8
|
| 85 | 83, 84 | itgreval 23563 |
. . . . . . 7
|
| 86 | 80, 82, 85 | 3eqtr4d 2666 |
. . . . . 6
|
| 87 | 86 | oveq2d 6666 |
. . . . 5
|
| 88 | 55, 87 | eqtr3d 2658 |
. . . 4
|
| 89 | 53, 88 | oveq12d 6668 |
. . 3
|
| 90 | 17, 89 | eqtrd 2656 |
. 2
|
| 91 | 4, 1 | itgcnval 23566 |
. . 3
|
| 92 | 91 | negeqd 10275 |
. 2
|
| 93 | 33, 35 | itgcnval 23566 |
. 2
|
| 94 | 90, 92, 93 | 3eqtr4d 2666 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xadd 11947 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-xmet 19739 df-met 19740 df-ovol 23233 df-vol 23234 df-mbf 23388 df-itg1 23389 df-itg2 23390 df-ibl 23391 df-itg 23392 df-0p 23437 |
| This theorem is referenced by: itgsub 23592 itgsubnc 33472 itgmulc2nc 33478 sqwvfourb 40446 |
| Copyright terms: Public domain | W3C validator |