![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lgsdir2lem1 | Structured version Visualization version Unicode version |
Description: Lemma for lgsdir2 25055. (Contributed by Mario Carneiro, 4-Feb-2015.) |
Ref | Expression |
---|---|
lgsdir2lem1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10039 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 8re 11105 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | 8pos 11121 |
. . . . 5
![]() ![]() ![]() ![]() | |
4 | 2, 3 | elrpii 11835 |
. . . 4
![]() ![]() ![]() ![]() |
5 | 0le1 10551 |
. . . 4
![]() ![]() ![]() ![]() | |
6 | 1lt8 11221 |
. . . 4
![]() ![]() ![]() ![]() | |
7 | modid 12695 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 4, 5, 6, 7 | mp4an 709 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8cn 11106 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
10 | 9 | mulid2i 10043 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | oveq2i 6661 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | ax-1cn 9994 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
13 | 12 | negcli 10349 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
14 | 9, 12 | negsubi 10359 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 7cn 11104 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
16 | 12, 15 | addcomi 10227 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | df-8 11085 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | 16, 17 | eqtr4i 2647 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 9, 12, 15, 18 | subaddrii 10370 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 14, 19 | eqtri 2644 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 9, 13, 20 | addcomli 10228 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 11, 21 | eqtri 2644 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22 | oveq1i 6660 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 1 | renegcli 10342 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
25 | 1z 11407 |
. . . . 5
![]() ![]() ![]() ![]() | |
26 | modcyc 12705 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 24, 4, 25, 26 | mp3an 1424 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 7re 11103 |
. . . . 5
![]() ![]() ![]() ![]() | |
29 | 0re 10040 |
. . . . . 6
![]() ![]() ![]() ![]() | |
30 | 7pos 11120 |
. . . . . 6
![]() ![]() ![]() ![]() | |
31 | 29, 28, 30 | ltleii 10160 |
. . . . 5
![]() ![]() ![]() ![]() |
32 | 7lt8 11215 |
. . . . 5
![]() ![]() ![]() ![]() | |
33 | modid 12695 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
34 | 28, 4, 31, 32, 33 | mp4an 709 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 23, 27, 34 | 3eqtr3i 2652 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 8, 35 | pm3.2i 471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 3re 11094 |
. . . 4
![]() ![]() ![]() ![]() | |
38 | 3pos 11114 |
. . . . 5
![]() ![]() ![]() ![]() | |
39 | 29, 37, 38 | ltleii 10160 |
. . . 4
![]() ![]() ![]() ![]() |
40 | 3lt8 11219 |
. . . 4
![]() ![]() ![]() ![]() | |
41 | modid 12695 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
42 | 37, 4, 39, 40, 41 | mp4an 709 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 10 | oveq2i 6661 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
44 | 3cn 11095 |
. . . . . . . 8
![]() ![]() ![]() ![]() | |
45 | 44 | negcli 10349 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() |
46 | 9, 44 | negsubi 10359 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
47 | 5cn 11100 |
. . . . . . . . 9
![]() ![]() ![]() ![]() | |
48 | 5p3e8 11166 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
49 | 47, 44, 48 | addcomli 10228 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 9, 44, 47, 49 | subaddrii 10370 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 46, 50 | eqtri 2644 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 9, 45, 51 | addcomli 10228 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 43, 52 | eqtri 2644 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | 53 | oveq1i 6660 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
55 | 37 | renegcli 10342 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
56 | modcyc 12705 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
57 | 55, 4, 25, 56 | mp3an 1424 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 5re 11099 |
. . . . 5
![]() ![]() ![]() ![]() | |
59 | 5pos 11118 |
. . . . . 6
![]() ![]() ![]() ![]() | |
60 | 29, 58, 59 | ltleii 10160 |
. . . . 5
![]() ![]() ![]() ![]() |
61 | 5lt8 11217 |
. . . . 5
![]() ![]() ![]() ![]() | |
62 | modid 12695 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
63 | 58, 4, 60, 61, 62 | mp4an 709 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
64 | 54, 57, 63 | 3eqtr3i 2652 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
65 | 42, 64 | pm3.2i 471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
66 | 36, 65 | pm3.2i 471 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fl 12593 df-mod 12669 |
This theorem is referenced by: lgsdir2lem4 25053 lgsdir2lem5 25054 |
Copyright terms: Public domain | W3C validator |