MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulass Structured version   Visualization version   GIF version

Theorem mavmulass 20355
Description: Associativity of the multiplication of two NxN matrices with an N-dimensional vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 25-Feb-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
mavmulass.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
mavmulass.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulass.z (𝜑𝑍 ∈ (Base‘𝐴))
Assertion
Ref Expression
mavmulass (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))

Proof of Theorem mavmulass
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2622 . . . 4 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . . 4 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . . 4 (𝜑𝑁 ∈ Fin)
7 mavmulass.m . . . . . 6 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
8 mavmulass.x . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐴))
91, 3matbas2 20227 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
106, 5, 9syl2anc 693 . . . . . . 7 (𝜑 → (𝐵𝑚 (𝑁 × 𝑁)) = (Base‘𝐴))
118, 10eleqtrrd 2704 . . . . . 6 (𝜑𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
12 mavmulass.z . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐴))
1312, 10eleqtrrd 2704 . . . . . 6 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
143, 5, 7, 6, 6, 6, 11, 13mamucl 20207 . . . . 5 (𝜑 → (𝑋 × 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑁)))
1514, 10eleqtrd 2703 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴))
16 1mavmul.y . . . 4 (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
171, 2, 3, 4, 5, 6, 15, 16mavmulcl 20353 . . 3 (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵𝑚 𝑁))
18 elmapi 7879 . . 3 (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵𝑚 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁𝐵)
19 ffn 6045 . . 3 (((𝑋 × 𝑍) · 𝑌):𝑁𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
2017, 18, 193syl 18 . 2 (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
211, 2, 3, 4, 5, 6, 12, 16mavmulcl 20353 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ (𝐵𝑚 𝑁))
221, 2, 3, 4, 5, 6, 8, 21mavmulcl 20353 . . 3 (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵𝑚 𝑁))
23 elmapi 7879 . . 3 ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵𝑚 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁𝐵)
24 ffn 6045 . . 3 ((𝑋 · (𝑍 · 𝑌)):𝑁𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
2522, 23, 243syl 18 . 2 (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
26 ringcmn 18581 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
275, 26syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2827adantr 481 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ CMnd)
296adantr 481 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
305ad2antrr 762 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑅 ∈ Ring)
31 elmapi 7879 . . . . . . . . 9 (𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
3211, 31syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐵)
3332ad2antrr 762 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
34 simplr 792 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑖𝑁)
35 simprr 796 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑘𝑁)
3633, 34, 35fovrnd 6806 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵)
37 elmapi 7879 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
3813, 37syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐵)
3938ad2antrr 762 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
40 simprl 794 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑗𝑁)
4139, 35, 40fovrnd 6806 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵)
42 elmapi 7879 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 𝑁) → 𝑌:𝑁𝐵)
43 ffvelrn 6357 . . . . . . . . . . 11 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4443ex 450 . . . . . . . . . 10 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4516, 42, 443syl 18 . . . . . . . . 9 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645imp 445 . . . . . . . 8 ((𝜑𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4746ad2ant2r 783 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑌𝑗) ∈ 𝐵)
483, 4ringcl 18561 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
4930, 41, 47, 48syl3anc 1326 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
503, 4ringcl 18561 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
5130, 36, 49, 50syl3anc 1326 . . . . 5 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
523, 28, 29, 29, 51gsumcom3fi 20206 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
535ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
546ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
5511ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
5613ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑁)))
57 simplr 792 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
58 simpr 477 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
597, 3, 4, 53, 54, 54, 54, 55, 56, 57, 58mamufv 20193 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))))
6059oveq1d 6665 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
61 eqid 2622 . . . . . . . 8 (0g𝑅) = (0g𝑅)
62 eqid 2622 . . . . . . . 8 (+g𝑅) = (+g𝑅)
6346adantlr 751 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
645adantr 481 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
6564ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
6632ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
67 simplr 792 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑖𝑁)
68 simpr 477 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
6966, 67, 68fovrnd 6806 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
7069adantlr 751 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
7138adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
7271ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
73 simpr 477 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
74 simplr 792 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑗𝑁)
7572, 73, 74fovrnd 6806 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
763, 4ringcl 18561 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
7765, 70, 75, 76syl3anc 1326 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
78 eqid 2622 . . . . . . . . 9 (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))
79 ovexd 6680 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ V)
80 fvexd 6203 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
8178, 54, 79, 80fsuppmptdm 8286 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) finSupp (0g𝑅))
823, 61, 62, 4, 53, 54, 63, 77, 81gsummulc1 18606 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
833, 4ringass 18564 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8430, 36, 41, 47, 83syl13anc 1328 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8584anassrs 680 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8685mpteq2dva 4744 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
8786oveq2d 6666 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8860, 82, 873eqtr2d 2662 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8988mpteq2dva 4744 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
9089oveq2d 6666 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
915ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
926ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑁 ∈ Fin)
9312ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑍 ∈ (Base‘𝐴))
9416ad2antrr 762 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑌 ∈ (𝐵𝑚 𝑁))
951, 2, 3, 4, 91, 92, 93, 94, 68mavmulfv 20352 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
9695oveq2d 6666 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
9764ad2antrr 762 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
9871ad2antrr 762 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
99 simplr 792 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑘𝑁)
100 simpr 477 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
10198, 99, 100fovrnd 6806 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
10245ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
103102imp 445 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
10497, 101, 103, 48syl3anc 1326 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
105 eqid 2622 . . . . . . . . 9 (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))
106 ovexd 6680 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ V)
107 fvexd 6203 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (0g𝑅) ∈ V)
108105, 92, 106, 107fsuppmptdm 8286 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) finSupp (0g𝑅))
1093, 61, 62, 4, 91, 92, 69, 104, 108gsummulc2 18607 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
11096, 109eqtr4d 2659 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
111110mpteq2dva 4744 . . . . 5 ((𝜑𝑖𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
112111oveq2d 6666 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
11352, 90, 1123eqtr4d 2666 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
11415adantr 481 . . . 4 ((𝜑𝑖𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴))
11516adantr 481 . . . 4 ((𝜑𝑖𝑁) → 𝑌 ∈ (𝐵𝑚 𝑁))
116 simpr 477 . . . 4 ((𝜑𝑖𝑁) → 𝑖𝑁)
1171, 2, 3, 4, 64, 29, 114, 115, 116mavmulfv 20352 . . 3 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))))
1188adantr 481 . . . 4 ((𝜑𝑖𝑁) → 𝑋 ∈ (Base‘𝐴))
11921adantr 481 . . . 4 ((𝜑𝑖𝑁) → (𝑍 · 𝑌) ∈ (𝐵𝑚 𝑁))
1201, 2, 3, 4, 64, 29, 118, 119, 116mavmulfv 20352 . . 3 ((𝜑𝑖𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
121113, 117, 1203eqtr4d 2666 . 2 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖))
12220, 25, 121eqfnfvd 6314 1 (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cotp 4185  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  CMndccmn 18193  Ringcrg 18547   maMul cmmul 20189   Mat cmat 20213   maVecMul cmvmul 20346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-mvmul 20347
This theorem is referenced by:  slesolinv  20486  slesolinvbi  20487
  Copyright terms: Public domain W3C validator