| Step | Hyp | Ref
| Expression |
| 1 | | 1mavmul.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | 1mavmul.t |
. . . 4
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
| 3 | | 1mavmul.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | 1mavmul.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | | 1mavmul.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | | mavmulass.m |
. . . . . 6
⊢ × =
(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| 8 | | mavmulass.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| 9 | 1, 3 | matbas2 20227 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑𝑚
(𝑁 × 𝑁)) = (Base‘𝐴)) |
| 10 | 6, 5, 9 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 11 | 8, 10 | eleqtrrd 2704 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁))) |
| 12 | | mavmulass.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐴)) |
| 13 | 12, 10 | eleqtrrd 2704 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁))) |
| 14 | 3, 5, 7, 6, 6, 6, 11, 13 | mamucl 20207 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑍) ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁))) |
| 15 | 14, 10 | eleqtrd 2703 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴)) |
| 16 | | 1mavmul.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
| 17 | 1, 2, 3, 4, 5, 6, 15, 16 | mavmulcl 20353 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵 ↑𝑚 𝑁)) |
| 18 | | elmapi 7879 |
. . 3
⊢ (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵 ↑𝑚 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁⟶𝐵) |
| 19 | | ffn 6045 |
. . 3
⊢ (((𝑋 × 𝑍) · 𝑌):𝑁⟶𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁) |
| 20 | 17, 18, 19 | 3syl 18 |
. 2
⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁) |
| 21 | 1, 2, 3, 4, 5, 6, 12, 16 | mavmulcl 20353 |
. . . 4
⊢ (𝜑 → (𝑍 · 𝑌) ∈ (𝐵 ↑𝑚 𝑁)) |
| 22 | 1, 2, 3, 4, 5, 6, 8, 21 | mavmulcl 20353 |
. . 3
⊢ (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵 ↑𝑚 𝑁)) |
| 23 | | elmapi 7879 |
. . 3
⊢ ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵 ↑𝑚 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁⟶𝐵) |
| 24 | | ffn 6045 |
. . 3
⊢ ((𝑋 · (𝑍 · 𝑌)):𝑁⟶𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁) |
| 25 | 22, 23, 24 | 3syl 18 |
. 2
⊢ (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁) |
| 26 | | ringcmn 18581 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 27 | 5, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 28 | 27 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CMnd) |
| 29 | 6 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 30 | 5 | ad2antrr 762 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 31 | | elmapi 7879 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 32 | 11, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 33 | 32 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 34 | | simplr 792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 35 | | simprr 796 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ 𝑁) |
| 36 | 33, 34, 35 | fovrnd 6806 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵) |
| 37 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 38 | 13, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 39 | 38 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 40 | | simprl 794 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 41 | 39, 35, 40 | fovrnd 6806 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵) |
| 42 | | elmapi 7879 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐵 ↑𝑚 𝑁) → 𝑌:𝑁⟶𝐵) |
| 43 | | ffvelrn 6357 |
. . . . . . . . . . 11
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 44 | 43 | ex 450 |
. . . . . . . . . 10
⊢ (𝑌:𝑁⟶𝐵 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 45 | 16, 42, 44 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 46 | 45 | imp 445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 47 | 46 | ad2ant2r 783 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (𝑌‘𝑗) ∈ 𝐵) |
| 48 | 3, 4 | ringcl 18561 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ 𝐵) |
| 49 | 30, 41, 47, 48 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ 𝐵) |
| 50 | 3, 4 | ringcl 18561 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) ∈ 𝐵) |
| 51 | 30, 36, 49, 50 | syl3anc 1326 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) ∈ 𝐵) |
| 52 | 3, 28, 29, 29, 51 | gsumcom3fi 20206 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))))) |
| 53 | 5 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 54 | 6 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 55 | 11 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁))) |
| 56 | 13 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑁))) |
| 57 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 58 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 59 | 7, 3, 4, 53, 54, 54, 54, 55, 56, 57, 58 | mamufv 20193 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))))) |
| 60 | 59 | oveq1d 6665 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = ((𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))))(.r‘𝑅)(𝑌‘𝑗))) |
| 61 | | eqid 2622 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 62 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 63 | 46 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 64 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 65 | 64 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 66 | 32 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 67 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 68 | | simpr 477 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 69 | 66, 67, 68 | fovrnd 6806 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑋𝑘) ∈ 𝐵) |
| 70 | 69 | adantlr 751 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑋𝑘) ∈ 𝐵) |
| 71 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 72 | 71 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 73 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 74 | | simplr 792 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 75 | 72, 73, 74 | fovrnd 6806 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑍𝑗) ∈ 𝐵) |
| 76 | 3, 4 | ringcl 18561 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗)) ∈ 𝐵) |
| 77 | 65, 70, 75, 76 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗)) ∈ 𝐵) |
| 78 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))) = (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))) |
| 79 | | ovexd 6680 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗)) ∈ V) |
| 80 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 81 | 78, 54, 79, 80 | fsuppmptdm 8286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))) finSupp (0g‘𝑅)) |
| 82 | 3, 61, 62, 4, 53, 54, 63, 77, 81 | gsummulc1 18606 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)))) = ((𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))))(.r‘𝑅)(𝑌‘𝑗))) |
| 83 | 3, 4 | ringass 18564 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 84 | 30, 36, 41, 47, 83 | syl13anc 1328 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 85 | 84 | anassrs 680 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 86 | 85 | mpteq2dva 4744 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁 ↦ (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗))) = (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 87 | 86 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 88 | 60, 82, 87 | 3eqtr2d 2662 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 89 | 88 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))))) |
| 90 | 89 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))))) |
| 91 | 5 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 92 | 6 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 93 | 12 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑍 ∈ (Base‘𝐴)) |
| 94 | 16 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
| 95 | 1, 2, 3, 4, 91, 92, 93, 94, 68 | mavmulfv 20352 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 96 | 95 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 97 | 64 | ad2antrr 762 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 98 | 71 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 99 | | simplr 792 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 100 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 101 | 98, 99, 100 | fovrnd 6806 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑘𝑍𝑗) ∈ 𝐵) |
| 102 | 45 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 103 | 102 | imp 445 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 104 | 97, 101, 103, 48 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ 𝐵) |
| 105 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) |
| 106 | | ovexd 6680 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ V) |
| 107 | | fvexd 6203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 108 | 105, 92, 106, 107 | fsuppmptdm 8286 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) finSupp (0g‘𝑅)) |
| 109 | 3, 61, 62, 4, 91, 92, 69, 104, 108 | gsummulc2 18607 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))) = ((𝑖𝑋𝑘)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 110 | 96, 109 | eqtr4d 2659 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 111 | 110 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))))) |
| 112 | 111 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))))) |
| 113 | 52, 90, 112 | 3eqtr4d 2666 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘))))) |
| 114 | 15 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴)) |
| 115 | 16 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑌 ∈ (𝐵 ↑𝑚 𝑁)) |
| 116 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 117 | 1, 2, 3, 4, 64, 29, 114, 115, 116 | mavmulfv 20352 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 118 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 119 | 21 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑍 · 𝑌) ∈ (𝐵 ↑𝑚 𝑁)) |
| 120 | 1, 2, 3, 4, 64, 29, 118, 119, 116 | mavmulfv 20352 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘))))) |
| 121 | 113, 117,
120 | 3eqtr4d 2666 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖)) |
| 122 | 20, 25, 121 | eqfnfvd 6314 |
1
⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌))) |